
OpenIB Architectural
Overview

Roland Dreier
Sean Hefty

Hal Rosenstock
Shahar

12/21/04

OpenIB 2

Context of
Architectural Overview

• Focus on initial components
• What is known now

– May change/evolve somewhat
as implementation develops

OpenIB 3

Architectural
Components

HCA

Core Infiniband Modules

Verbs

MAD Services

SMI GSI QP Redirection

kDAPL

PMASMA SA ClientCM

HCA Driver

IPoIB SRP SDP

iSER NFS-R

Portals

Lustre

OpenSM OpenMPI uDAPL

User-level HCA Driver

User-level Infiniband Services

Verbs

MAD Services

SA ClientCM

User-level Access Modules

CM SA ClientMAD Services

user-space

kernel

OpenIB 4

OpenIB
Layers/Components/M
odules
• IB driver
• IB core
• IPoIB
• OpenSM
• Diagnostic tools

OpenIB 5

IB Driver

• Mthca
– MT23108 and MT25208 HCAs

• MT25208 in compatibility mode

• Minor features to be completed:
– RDMA and atomic support
– APM support
– These features are well-understood;

API already exists; small amount of
new code

• Larger features can be
implemented as required by
applications
– Memory windows, shared receive

queues, Mellanox-style “FMRs”

OpenIB 6

IB Driver

• Userspace verbs support
– Requires kernel driver

extensions
• Allocate/map userspace doorbell

pages

– Control path talks to kernel
through a file descriptor

• Use read/write instead of ioctl to
avoid “big kernel lock”

• automatic clean-up when file
descriptor is closed

OpenIB 7

IB Driver

• Userspace verbs support (cont’d)
– Datapath functionality in a

“libmthca”
• Fast path operations require only a

function call from application (through
function pointer) to hardware access
function

• No context switches required in fast
path

• Interrupt-driven operation requires
kernel to wake up process;
performance is limited by kernel
interrupt service and scheduler latency

– Thread safety using pthread
mutexes

• applications must use pthreads -- “raw”
threading with clone() won't work

OpenIB 8

IB Driver

• Optimizations
– Code designed from the start

paying attention to expensive
operations (PCI reads, locked
operations and cache misses)

– Some low-hanging fruit in
reduction of locking in interrupt
service and CQ polling code
paths

– Extend verbs API for multiple
CQ event handlers. In
conjunction with MSI-X, allows
CQs to be bound to a CPU for
SMP performance

OpenIB 9

Core Infiniband
Modules
Overview

• Collection of kernel-mode
Infiniband modules

• Expose APIs required to
access specific Infiniband
functionality
– Verbs
– MAD services

• SMI, GSI, QP redirection

– MAD clients
• CM, SA client, SMA, PMA

OpenIB 10

Core Infiniband
Modules
Overview

• Entry point for HCA driver
registration
– Notifies clients of device

insertion/removal
– Hardware independent

OpenIB 11

Core Infiniband
Modules
Verbs

• Provide infrastructure for
kernel/user communication

• Split between extensions to
kernel core IB layer and a
“libibverbs” in userspace

• Handle memory pinning
(mostly done in userspace
with mlock() system call)

• Pass most operations on to
device-specific driver (mthca)

OpenIB 12

Core Infiniband
Modules
Verbs

• Provides direct path to HCA
driver
– Shared handles with HCA

driver
– Inline speed path operations

for low latency

• Reference counting for
proper cleanup

• Direct access to commonly
accessed resource attributes
– QP sizes, CQ sizes

OpenIB 13

Core Infiniband
Modules
MAD Services
• Access to special QPs (QP0

/QP1)
• Request/response matching

– timeouts

• RMPP support
• Support for QP redirection

– Is this really needed ?

• Shared CQ to reduce interrupts
• Multi-threaded completion

processing
– One thread per port

• MAD buffer cache
• Zero-copy sending or receiving

MADs

OpenIB 14

Core Infiniband
Modules
MAD Services

• Minimal translations between
clients and HCA driver
– Use same work request

structure when posting sends
– Use similar structure when

reporting completions

• Queuing of requests to
handle QP overrun and for
error recovery

OpenIB 15

Core Infiniband
Modules
CM
• Implements CM protocol

– IBA 1.1 compliance
– Connection/disconnection requests

(RC, UC)
• REQ, REP, RTU
• DREQ, DREP
• REJ
• MRA

– Service ID resolution
• SIDR_REQ, SIDR_REP

– Path migration
• LAP, APR

• API and HLD on openib-general
list
– Service ID range

OpenIB 16

Core Infiniband
Modules
SA Client

• Issues and tracks queries to
SA

• IPoIB requirements only
currently supported
– PathRecord requests
– Manages multicast join/leave

as well as group
creation/deletion
(MCMemberRecord)

OpenIB 17

Core Infiniband
Modules
SA Client
• Other queries implemented

based on ULP/application
request/demand

– ServiceRecord
• Applications/ULPs

– Sandia Portals
– u/kDAPL

• Methods
– Set, Delete, Get
– GetTable ?

OpenIB 18

Core Infiniband
Modules
SA Client
• Other queries implemented

based on ULP/application
request/demand (cont’d)
– MultiPathRecord

• Multi HCA and port
• RMPP required (both SA client

and SA)
– Only consumer of dual sided RMPP

• SA optional feature
– Not currently planned as part of

current OpenSM work

OpenIB 19

User-level Access
Modules
Overview

• Collection of related modules
• Support user-level clients

accessing kernel-mode
services
– MAD services
– MAD clients

• CM, SA client
• SMA, PMA are send only clients

– HCA firmware performs IB agent
functions

OpenIB 20

IPoIB

• Functionality
– IPv4

• Unicast
• Multicast
• DHCP ?
• Already implemented; requires more

testing

– IPv6
• Works; DHCPv6 not tested

– Open Issues
• Multicast router
• Port bonding

– Connected mode I-D support not
currently supported

• Nor are MIB I-Ds

OpenIB 21

OpenSM

• Vendor layer
– Port to gen2 interfaces

• Solicited send with timeouts
• Use kernel RMPP ?

• Integrate gen1 changes
– Primarily Mellanox changes

• Mellanox Gold 1.6.1 is latest
version

• Build environment (autotools)

OpenIB 22

OpenSM

• CLI (If/when needed)
– Use standard SA queries
– If additional functionality

needed, special well defined
interface for this access to be
developed

• Based on socket or pipes or
similar mechanism

OpenIB 23

Diagnostic Tools

• Proposed Tools and Syntax
– https://www.openib.org/svn/gen2/tru

nk/src/userspace/diags/diagtools-
proposal.txt

• Host
– Ibstatus: displays basic information

obtained from the local IB driver
– Ibping: validates connectivity

between IB nodes using UD
transport (or vendor MAD)

– Ibroute: displays the unicast or
multicast forwarding table for the
specified LID

– Ibtracert: traces the path from a
source GID/LID to a destination
GID/LID

OpenIB 24

Diagnostic Tools

• SMA/PMA query tools
– smpquery: basic subset of

standard SMP queries
(NodeInfo, PortInfo, etc.)

– perfquery: obtain the basic
performance and error
counters from the PMA at the
node specified

OpenIB 25

Diagnostic Tools
Topology File

• Two alternatives
– Gather topology from live

topology and annotate (if
necessary)

– Create an expected topology
from configuration and
heuristics

• Planning on using first
approach (live topology
approach)

OpenIB 26

Topology File Syntax

switchguids=0x8f104003f0313
Switch 8 "S-0008f104003f0313" # OpenIB port

0 lid 16
[5] "S-0008f104003f0314"[2]
[6] "S-0008f104003f0315"[2]
[8] "S-0008f104003f0317"[2]
[7] "S-0008f104003f0316"[2]

switchguids=0x8f104003f0314
Switch 8 "S-0008f104003f0314" # OpenIB port

0 lid 17
[2] "S-0008f104003f0313"[5]
[3] "S-0008f104003f0312"[5]
[4] "S-0008f104003f0311"[5]

OpenIB 27

Topology File Syntax

hcaguids=0x8f10403965028
Hca 2 "H-0008f10403965028" # OpenIB
[1] "S-005442ba00001180"[22] # lid 5

hcaguids=0x8f10403965014
Hca 2 "H-0008f10403965014" # OpenIB
[1] "S-005442ba00001180"[12] # lid 4

hcaguids=0x8f10403965008
Hca 2 "H-0008f10403965008" # OpenIB
[1] "S-005442ba00001180"[8] # lid 2 lmc 0

hcaguids=0x8f10403965010
Hca 2 "H-0008f10403965010" # OpenIB
[1] "S-005442ba00001180"[5] # lid 3 lmc 0

OpenIB 28

Diagnostic Tools

• Network
– ibnetdiscover: performs subnet

discovery and outputs a human
readable topology file

– ibswitches: displays switches
discovered in subnet from either
topology file or live topology

– Ibhosts: displays HCAs discovered
in the subnet from either topology
file or live topology

– ibnetverify: scans the network to
validate the connectivity and reports
errors (from port counters)

OpenIB 29

Thank You

