Proposal for a

Reliable User Datagram Protocol (RDP)

Oracle IPC delivers a reliable msg service to its internal database clients. For several reasons, which are beyond the scope of this document, Oracle employs User Datagram Protocol (UDP) over sockets and currently chooses to implement the reliable, in-order, no duplicate msg semantics itself.

However, there are several side effects to doing this in / from user-mode resulting in slow send completions plus other degenerative side effects from increasing load.

UDP over IPOIB improves some characteristics, such as thru-put, but also shows increased CPU utilization and as well suffers from the same side effects UDP experiences over GE.

We believe there is an opportunity to further leverage the raw bandwidth and reduced latency of 10g / RNIC interconnects thru a new socket offload driver which offloads UDP, bypassing the OS IP stack, which additionally provides reliable, in-order, no duplicate msg delivery semantics.

An initial investigation using a RDP driver demonstrates several key advantages:

1) 1/2 latency of normal UDP GE and IPOIB !

2) 50 % less CPU consumed per operation than IPOIB, 26 % less than UDP over GE.

3) Near wire bandwidth – within 5% of thru-put measured with uDAPL.

4) No pre-registration of memory. User data is copied to / from system buffers ***

5) Minimal QP requirements - Node to Node connections are managed by the RDP driver and are shared by all local processes.

6) Nominal changes to our existing Oracle UDP IPC library which already passes the majority of Oracles internal regression suites. This is a key benefit of RDP.

Our Oracle IPC library attempts to create a socket via “AF_INET_OFFLOAD” and if it succeeds disables its internal reliable msg delivery logic (acks, retrans, windows, etc) – otherwise a “normal UDP” socket is opened.

Oracle usage of sockets calls that RDP must support:

1) socket

2) bind

3) ioctl

4) sendmsg

5) recvmsg

6) poll

7) getsockopt/setsockopt

Some additional features which are required.

1) A receiver process that does not empty its socket in a timely manner must not consume a disproportionate share of system level buffers and or cause the stalling / back pressure of unrelated processes / socket operations. Backpressure (wouldblock,nobufs) must be applied to all sockets sending to the slow receiver.

2) Access to the RDP protocol must be protected such that only identified users / groups can open sockets to each other. A simple access control file can be used to define users / groups that have access to RDP. If the access control file is not present then no access control is provided. When present - users / groups are required to have an entry to allow access to the RDP interface or socket create will fail.

3) RDP can load as a loadable driver - but it is likely that iWARP and as well IB implementations will be different (although it would be possible to have a single driver this would require some common lower interface - at some point OpenIB should have this). They can all be loaded simultaneously - the correct driver is invoked based on the IP address specified.

Oracle current requirements for RDP are specific to point to point msgs. That is, Oracle does not currently require reliable broadcast semantics.

A goal of RDP should be to support all existing socket functionality relevant to UDP with no changes to any existing socket application - other than specifying AF_INET_OFFLOAD. However, an RDP aware socket application can take advantage of the RDP features.

1) B-copy. Sends and recvs are copied to / from system buffers

2) Z-copy sends. Will remove ½ the data copy and is relatively straight forward. It may for example use on the fly registration / mapping via FMRs and or cached dynamic registrations. The effectiveness of zero copy will depend on the threshold / crossover where it becomes less expensive to perform zero copy vs just copying the data.

3) directed sends / receives. Will help Oracle buffer cache block xfers “if” the cost of setup is below 8k bytes. 8k bytes is currently the crossover for uDAPL / iTAPI. Requires new interface.

4) Z-copy recvs. Will remove the remaining ½ data copy.

Note that modes 2-4 will require async submit and completion – possibly via AIO support.

Design Notes for RDP b-copy mode

RDP b-copy mode copies application send buffers into one or more system buffers, and copies from system buffers on the recv side to the application recv buffers.

Assuming that system buffers are a limited resource a back pressure system for send buffer exhaustion and as well for recv buffer exhaustion is required.

In the send buffer exhaustion case, RDP returns enobuf, and in the recv buffer exhaustion case RDP returns ewouldblock. i.e., enobufs implies no more sends can proceed on this socket, while ewouldblock implies, no more sends to that destination socket can proceed.

RDP interface

RDP reliably delivers datagrams to a target port - in order - without duplication or loss.

RDP does not guarantee that a datagram is delivered to the remote application.

It is up to the RDP client to deal with datagrams lost due to transport failure or remote application failure.

RDP uses the existing sockets API with no modifications.

An existing UDP application can run unmodified over an RDP transport.

An RDP client opens an RDP socket by specifying the AF_INET_OFFLOAD protocol family and the SOCK_DGRAM protocol.

Send operations

Back pressure on send operations may occur:

1) while path to remote system is being resolved.

2) No send buffers available - enobufs

3) Targeted recvr port has consumed to many recv side buffers – ewouldblock.

It is up to the RDP client to retry send operations that are back pressured.

Note: a back pressure condition may take some time to resolve so the RDP client

should use a retry mechanism with a backoff policy to prevent spinning. The RDP driver should not o/s wait the process resulting in a context switch.

Send failures are reported on send submit – efault – if there is no path to targeted port.

1) No transport path

2) Remote port does not exist

After submit, if the send can not be delivered and it is dropped; The RDS driver must mark the path as failed and fail all subsequent send operations for a minimum path recovery period. It is upto the RDP client to tear down the existing sockets and create new ones – assuming a new path to the destination eventually is resolved.

Note: that if a path to a remote port appears subsequent to a failure and the minimum path recovery period has expired, future send operations must be completed successfully.

Note: RDP may choose to create a node to node level connection based on the target of a send operation. It is acceptable for RDP to return ewouldblock until the connection completes.

Note: RDP should implement maximum concurrency for operations across discrete sockets. For example, serialization of sends should only occur at the shared node level connection with a minimal critical region (posting to the QP). The connection synchronization should balance spinning vs context switching a process.

Recv operations

Recv data is copied from system buffers into the application recv buffer. Assuming a limited number of system buffers used for staging application recv data, a mechanism to equitable share the system recv buffers across existing application sockets is required.

Consider the case where a receiver process is not emptying its recv msgs timely, thus causing msgs to be queued in system level buffers. In this case, when the level of queued msgs exceeds a fairness threshold - the RDP driver must implement backpressure to all sockets sends targeted to the slow receiver process socket.

The RDP driver should maintain a high limit recv memory threshold for each socket. A configurable default value for the high limit can be set for the RDP driver. An RDP client can use the so_recvbuf option to raise the high limit for a socket.

Note: the RDP driver should implement a two level threshold, sending an unstall msg to the list of stalled sockets when the lower level threshold is crossed.

Note: the RDP driver must detect the death of a remote node and unstall any locally stalled sockets.

RDP path Failover

RDP should transparently failover between multiple ports within the HCA and across multiple HCAs. A send failure only occurs if no path to the destination exists. It is acceptable to return ewouldblock while resolving the path to a target and or completing the connection to a target. The RDP client will retry the operation until it chooses to timeout the send or efault is returned from RDP.

If a send operation is lost / failed then the corresponding path is marked as failed. A path in the failed state can not recover for a minimum path recovery period. The minimum path recovery period is set via RDS configuration parameter to guarantee application discovery of the failed path / lost send operations. Generally, the minimum path recovery period should be set to 2x the application path down (heartbeat) discovery period. During the minimum recovery period all send operations are failed. After the minimum path recovery period has expired a subsequent send operation may cause the path to move to the open state – assuming the path has been repaired.

RDP Resources

RDP driver resources primarily consists of send and recv memory buffers and QPs consumed for node to node connections.

RDS must ensure that a slow recvr process does not consume more than its fair share of the RDS system recv buffers. Consider the case of a recvr process that is not reaping recv buffers on a regular basis. In this case, the RDS driver is posting / assigning system recv buffers to the process’s sockets. It would be possible for all the RDS system level recv buffers to be posted to a single process’s socket – unless some fairness mechanism is employed.

RDP configuration

cat /proc/driver/rds/config

rds debug version 3.1.0.1.6

for InfiniCon Systems(r) Infiniband(tm) Rds , debug version 3.1.0.1.6

Built for Linux Kernel 2.4.21-15.ELsmp

Usage Information:

To change a parameter echo a line of the form 'parameter=value' to this file.

Only 1 parameter can be specified per write

RdsDbgLvl - Logging for Rds

 Bit masks are as follows:

 0x80000000 - Serious Errors 0x40000000 - Errors

 0x20000000 - Warnings 0x10000000 - Informational messages

 0x01000000 - Function call trace

 0x00000004 - CM 0x00000002 - States

 0x00000001 - Session 0x00000008 - Control Block

 0x00000010 - Sends 0x00000020 - Receives

 0x00000100 - QP 0x00000080 - ULP interface

RdsTraceLvl - Time tracing for Rds

 Bit masks are as follows:

 0x80000000 - Trace All

 0x00001000 - Trace Sends 0x00002000 - Trace Recvs

 0x00004000 - Trace Poll 0x00008000 - Trace Ctrl

UserBufferSize - User buffer size

MaxDataRecvBuffers - Max data recv buffers per socket

MaxDataSendBuffers - Max data send buffers per socket

MaxCtrlRecvBuffers - Max ctrl recv buffers

MaxCtrlSendBuffers - Max ctrl send buffers

DataRecvBufferLVM - Recv buffer Low Water Mark (percentage)

PerfCounters - Performance Counters ON/OFF

MaxRecvMemory - Maximum memory allocated for Receives in KBytes

PendingRxPktsHWM - Pending Rx buffers High Water Mark (percentage)

Heartbeat - Heartbeat ON/OFF

Parameter Values:

RdsDbgLvl=0xe0000000

DataRecvBufferLVM=50

MinRnrTimer=10

PerfCounters=1

PendingRxPktsHWM=75

Heartbeat=1

Read Only Parameters (set at module load time):

UserBufferSize=4096

MaxDataRecvBuffers=500

MaxDataSendBuffers=500

MaxCtrlRecvBuffers=100

MaxCtrlSendBuffers=50

MaxRecvMemory=128000

RDP statistics

cat /proc/driver/rds/stats

Rds Statistics:

 Sockets open: 0

 End Nodes connected: 1

 Performance Counters: ON

 Transmit:

 Xmit bytes 728737096912

 Xmit packets 275131636

 Loopback packets dropped 0

 Receive:

 Recv bytes 42947350348

 Recv packets 51787812

 Recv packets pending 0

 Recv packets dropped 5

 Stalled Ports: 0

 Stalls Sent 0

 Unstalls Sent 0

 Stalls Recvd 0

 Unstalls Recvd 0

 Debug Stats:

 ENOBUFs (105) returned 0

 EWOULDBLOCKs(11) returned 0

 Rx alloc memory 2603184

 Rx cache miss 112

 Rx pkts pending HWM 23554

 Stall events ignored 0

RDP Information

cat /proc/driver/rds/info

Session Info:

IP State Rx bufs Rx Cache

10.0.0.9 ACTIVE 500 112

Socket Info:

Port Rx pending State

Notes to Implementors:

1. SIOCGIFCONF request (and other requests) to ioctl() call, on socket created with AF_INET_OFFLOAD family, should return results confined to interfaces supporting RDP over off-loaded transports.

2. The setsockopt() for SO_RCVBUF is a hint which the application can provide, to indicate the amount of out-standing messages the process owning the socket can have. A receiver may not be marked as inactive until the queued messages to that socket is more than the limit set by setsockopt()

3. It is expected that back pressure on a sending socket (returning EWOULDBLOCK on submit of a sndmesg) should be done only if the request was directed to a slow receiver. i.e., the implementation should not stall the application’s send pipeline, as soon as the first send to a slow receiver socket is issued.

4. It is recommended that implementations avoid redundant memory copies. On sending side, data gets copied from user buffer to one of the registered buffers which gets posted to the Endpoint (QP). On the receiving side, completed receive work requests get queued to the target socket, till the application drains it by calling recvmsg().

5. Multiple buffer pools and multiple connections: Oracle’s IPC messages can be broadly classified according to their sizes as follows.

· Lock manager messages which are less than 500 bytes

· RDMA write of database blocks (2K, 4K, 8K, 16K, 32K).

· PQ messages (4K, 8K, 16K) It is recommended that the implementation create multiple connections, and route messages of different sizes through different connections. This is to better handle issues with registered memory wastage (using a 4K or 8K buffer to receive a 400 byte message) potentially resulting in causing back pressure.

