uDAPL Extension Design and API Proposal

December 2005

Contents

2.2
2.3

2.4

DeSIigN OVEIVIEW ...cccoiiiiiieieeee e 1-1
Extension Data Structures and TYPES.....ccevuiuiiiiieeereeeiiiin e e e e 2-1
Modified UDAPL Structures and TYPESuuvrrieieeiiiiiiiiiieeee e e e e eritrrr e e e e e s snrrneeeee e e 2-1
211 SEUCE dat_PrOVIAET ...ttt 2-1
2.1.2 DAT _EVENT _DATA . o ettt ettt tee e stea e st e e snteesnaeeenaeeanaeeenneees 2-1
2.1.3 DAT_EVENT_NUMBERccoiiiiiiiecee ettt 2-1
Provider SPecific QUENY TYPES ...uuuiiiieeeieiiiiiieet e e e e e eettte e e e e e e s s st e e e e e e s s snnneneeeeeeeeen 2-2
Sample Extension Structures and TYPEScuvvveiieeeei it e 2-3
23.1 DAT _EXTENSION_FUNC ..ottt 2-3
2.3.2 DA B =] =SSR 2-3
2.3.3 DAT _EXT_EVENT _TYPE. ...ttt 2-3
234 DAT _EXT_FLAGS ..ottt e e s e st e s s 2-3
2.35 DAT_IMMEDIATE_DATA ...ttt ee e ste ettt etae e e e e nnae s 2-4
2.3.6 DAT _EXTENSION _DATA oottt ettt 2-4
SaMPIE EXIENSION APISveiiiiie e e e e e e e e e e nnrr e 2-5
24.1 Immediate Data EXIENSIONScoeiiiiiiiiiiiiiiia e 2-6

2.4.2 PN (0] 1 41Tl (=] (0] 1 [2-7

DAPL Extension Design and API

1. Design Overview

The uDAPL architecture splits services up into two libraries: libdat.[a,s0] and libdapl.so. The libdat
library is linked to the uDAPL application. The primary role of this library is to dynamically load one or
more specific libdapl.so “transport provider” libraries and implement a very thin veneer to the APIs
implemented in libdapl.

Most libdat calls are actually implemented as macros that use an indirect call table provided by
dynamically loaded libdapl. Allowing the requested transport provider to be loaded dynamically allows
an UDAPL based application to use more than one type of interconnect technology simultaneously.

To keep the impact of adding extensions to libdat to a minimum while allowing the largest degree of
freedom for extensions APIs, one additional entry point is added to the end of the provider call table that
takes an extension ID followed by a va_arg list. This retains the ability to implement extension calls in
libdat as macros with the small additional overhead of parsing the va_arg list within the provider specific
libdapl.

To allow for complete compatibility between versions of libdat and libdapl that do and do not support the
extension interface, libdat is modified to probe a loaded libdapl to see if it is supports the extension call
table entry point. A Boolean is set according to the response and tested within the dat_api extension call
to prevent making an invalid reference in the call table. When the provider does not support the extension
interface, DAT_NOT_IMPLEMENTED is returned.

Even though a provider may support the extension interface, it is not required to support all extension
services. An application can query the provider for a list of extensions services using the dat_ia_query()
interface and iterating through the provider specific key-value pairs for supported services. A provider
will return DAT_NOT_IMPLEMENTED if an unsupported extension service is requested.

The other impact to libdat and associated include files is the addition of a new DAT_EVENT number,
DAT_EXTENSION_EVENT and a new event data type, DAT_EXTENSION_DATA. The new data
type has the following structure:

typedef struct dat extension data {

DAT_DTO_COMPLETION_EVENT DATA dto;
DAT EXT EVENT TYPE type;
union {

.. /* event specific data */
.. /* event specific data */

} DAT EXTENSION DATA;

The union section is where extension specific data is defined. The DAT_EXTENSION_DATA type,
along with extension call interface macros, DAT_EXT_TYPE defines, and extension specific data is
defined in ~/include/dat/dat_extensions.h. This file may be supplied by the uDAPL provider to define the
extensions supported. However, it is expected that all providers will follow the same interface for any
specific extension specified in this document.

This document is organized as follows: Section 1 provides an overview of the uDAPL architecture and
how the extension interface will be added in a backward compatible manner. Section 2 specifies the
changes made to existing uDAPL data structures and types as well as new data structures and types
required to implement extension APIs. Finally, Section 3 specifies a series of specific extension APIs
that cover general, atomic, and collective operations.

1-1

DAPL Extension Design and API

2. Extension Data Structures and Types

All prototypes, macros, types, and defines for these extension APIs are defined in
~/include/dat_extensions.h. Adding extension capabilities to uDAPL requires a few minor modifications
to existing include files and data structures with the bulk of new extension types and definitions contained
in the file dat_extensions.h.

2.1 Modified uDAPL Structures and Types

2.1.1 struct dat_provider

The dat_provider structure (udat_redirection.h) is native to uDAPL and defines the provider redirection
call table. To accommodate the core extension call, a single entry is added to the end as follows:

struct _dat provider {

/* extensions */
DAT EXTENSION_ FUNC extension func;

}i
2.1.2 DAT_EVENT_DATA

The DAT_EVENT_DATA type (dat.h) is native to uDAPL as a union of all returned event data types. To
accommodate extension data types, it is augmented with an additional entry to cover extension data types.

typedef union dat event data {

DAT EXTENSION DATA extension data;
} DAT EVENT DATA;

2.1.3 DAT_EVENT_NUMBER

To define the format of event data, at DAT event contains an event number type. To specify the
extension data types, an additional entry (dat.h) is added to the DAT_EVENT_NUMBER enum.

typedef enum dat event number {

DAT_ EXTENSION EVENT = 0x20001;
} DAT EVENT NUMBER;

2-1

2.2

DAPL Extension Design and API

Provider Specific Query Types

Provider specific attribute strings for extension support are returned with dat_ia_query() using
DAT_PROVIDER_ATTR_MASK set to DAT_PROVIDER_FIELD_PROVIDER_SPECIFIC_ATTR
where DAT_NAMED_ATTR name is set to “extended operation” and value is set to “TRUE” when
extended operation is supported. The following definitions are used for these new extensions.

#define
#define
#define
#define
#define
#define
#define
#define
#define

DAT_EXT_ATTR
DAT_EXT_ATTR_RDMA_WRITE_IMMED
DAT_EXT_ATTR_RECV_IMMED
DAT_EXT_ATTR_RECV_IMMED_EVENT

DAT_EXT_ATTR_RECV_IMMED_PAYLOAD

DAT_EXT_ATTR_FETCH_AND_ADD
DAT_EXT_ATTR_CMP_AND_SWAP
DAT_EXT_ATTR_TRUE
DAT_EXT_ATTR_FALSE

2-2

"DAT_EXTENSION_INTERFACE"
“DAT_EXT_RDMA_WRITE_IMMED"
"DAT_EXT_RECV_IMMED"
"DAT_EXT_RECV_IMMED_EVENT"
"DAT_EXT_RECV_IMMED_PAYLOAD"
"DAT_EXT_FETCH_AND_ADD"
“DAT_EXT_CMP_AND_SWAP""
"TRUE"

"FALSE"

DAPL Extension Design and API

2.3 Sample Extension Structures and Types

231 DAT_EXTENSION_FUNC

The prototype for the extension call is defined (dat_redirection.h) as follows:
typedef DAT_RETURN (*DAT_EXTENSION_FUNC) (

IN DAT_HANDLE, /* DAT handle */
IN DAT_EXT _OP, /* DAT extension operation */
IN va_list); /* va_list, variable arguments*/

23.2 DAT EXT OP

The DATA_EXT_OP enum specifies the type of extension operation.
typedef enum dat_ext op {

DAT_EXT_RDMA_WRITE_ IMMED,

DAT_EXT_RECV_IMMED,

DAT_EXT_FETCH_AND_ADD,

DAT_EXT_CMP_AND_SWAP,

} DAT EXT OP;

The enumeration will be extended as new extension operations are added.

2.3.3 DAT_EXT EVENT TYPE

The DATA_EXT_EVETN_TYPE enum specifies the type of extension data contained in the
DAT_EVENT.
typedef enum dat ext event type {
DAT_EXT_RDMA_WRITE_IMMED_STATUS,
DAT_EXT_RECV_NO_IMMED,
DAT_EXT_RECV_IMMED_DATA_EVENT,
DAT_EXT_RECV_IMMED_DATA_PAYLOAD,
DAT_EXT_FETCH_AND_ADD_STATUS,
DAT_EXT_CMP_AND_SWAP_STATUS,
} DAT EXT EVENT TYPE;

The enumeration will be extended as new extension data types are added.

2.3.4 DAT_EXT_FLAGS
The DATA_EXT_FLAGS enum specifies the extended flags for operations.

typedef enum dat ext flags {
DAT_EXT_WRITE_IMMED_FLAG
DAT_EXT_WRITE_CONFIRM_FLAG
} DAT_EXT_FLAGS;

ox1,
0x2,

2-3

DAPL Extension Design and API

2.3.5 DAT_IMMEDIATE_DATA

The DAT_IMMEDIATE_DATA type contains the 32 bites of immediate data associated with an RDMA
write.

typedef struct dat immediate data {
DAT UINT32 data;
} DAT IMMEDATE_ DATA;

2.3.6 DAT_EXTENSION_DATA

When a DAT_EVENT specifies an event type of DAT_EXTENSION_EVENT, event data is defined as
follows:

typedef struct dat_extension_data {
DAT_DTO_COMPLETION_EVENT_DATA dto;

DAT_EXT_EVENT_TYPE type;
union {

DAT_RDMA_WRITE_IMMED_DATA immed,;
Y

} DAT_EXTENSION_DATA;

The union will be extended as new extension APIs are added.

2-4

DAPL Extension Design and API

2.4 Sample Extension APIs
The following function prototypes are actually implemented as pre-processor macros. The macro

validates that extensions are supported and then calls the DAT_EXTENSION_FUNC vector in the
dat_provider structure. The type definition for the core extension call is as follows:

typedef DAT RETURN (*DAT_EXTENSION_FUNC) (

IN DAT_HANDLE, /* DAT handle */
IN DAT_EXT _OP, /* DAT extension operation */
IN va_list); /* va_list, variable arguments*/

Each API below details input/output arguments and completion semantics. Explicit return codes are not
given but they can be assumed to be logical uses of existing DAT return codes.

A uDAPL application can determine which extensions are supported by a uDAPL provider by making the
ep_ia_query() call and iterating the DAT_NAMED_ATTR array pointed to by the provider_specific_attr
member in DAT_PROVIDER_ATTR. The DAT_NAMED_ATTR type contains two string pointers of
name and value. The table below specifies the name/extension relationship. In most cases, simply having
the name defined implies support and the string value does not supply additional context.

Extension Name Attribute

Indicates general support for extensions DAT_EXTENSION_INTERFFACE

Indicates immediate data delivered in event DAT_EXT_RECV_IMMED_EVENT

Indicates immediate data delivered in payload | DAT_EXT_RECV_IMMED_PAYLOAD

dat_ep_post write_immed DAT_EXT_RDMA WRITE_IMMED
dat_ep_post recv_immed DAT _EXT_RECV_IMMED
dat_ep_post_fetch_and_add DAT_EXT_FETCH_AND_ADD
dat_ep_post_cmp_and_swap DAT EXT _CMP_AND_ SWAP

2-5

DAPL Extension Design and API

2.4.1 Immediate Data Extensions

24.1.1 dat_ep_post_write_immed|()

DAT RETURN
dat _ep post write immed (
IN DAT_ EP HANDLE ep_handle,
IN DAT COUNT num_segments
IN DAT LMR TRIPLET *local iowv,
IN DAT DTO_COOKIE user_ cookie,
IN DAT RMR TRIPLE *remote iov,
IN DAT UINT32 immediate data,

IN DAT COMPLETION FLAGS completion flags) ;

This asynchronous call performs a normal RDMA write to the remote endpoint followed by a post of an
extended immediate data value to the receive EVD on the remote endpoint. The immediate data will
consume a posted receive immediate buffer at the remote endpoint.

Extended Flags:

DAT_EXT_WRITE_IMMED_FLAG requests that the supplied 'immediate’ value be sent as the payload
of a four byte send following the RDMA Write, or any transport-dependent equivalent thereof.

DAT _EXT WRITE_CONFIRM_FLAG requests that this DTO not complete until receipt by the far end
is confirmed. Event completions are as follow:

Endpoint | EVD Extension Type Extension Event Data Type
Initiator Request DAT_EXT_RDMA_WRITE_IMMED_STATUS | N/A
DAT_EXTENSION_EVENT
Remote Receive DAT_EXT_RECV_IMMED_DATA_EVENT | DAT_RDMA_WRITE_IMMED_DATA
DAT_EXTENSION_EVENT

2.4.1.2 dat_ep_post_recv_immed()

DAT RETURN

dat ep post write immed (
IN DAT EP HANDLE ep_handle,
IN DAT COUNT size,
IN DAT LMR TRIPLET *local iov,
IN DAT DTO_COOKIE user_cookie,

IN DAT COMPLETION FLAGS completion flags) ;

This call performs a normal post receive message to the local endpoint that includes additional 32-bit
buffer space to receive immediate data. Event completion for the request completes as follow:

Endpoint | EVD Extension Type Extension Event Data Type

Initiator Receive DAT_EXT_RECV_IMMED_DATA_EVENT or | DAT_RDMA_WRITE_IMMED_DATA
DAT_EXTENSION_EVENT | DAT_EXT_RECV_IMMED_DATA_PAYLOAD

2-6

2.4.2

2421

DAPL Extension Design and API

Atomic Extensions

dat_ep_post_cmp_and_swap()

DAT RETURN
dat_ep post cmp and swap (

IN DAT EP HANDLE ep_handle,

IN DAT UINT64 cmp_value,

IN DAT_UINT64 swap_value,

IN DAT LMR TRIPLE *local iowv,

IN DAT DTO_COOKIE user_ cookie,

IN DAT RMR TRIPLE *remote iov,

IN DAT COMPLETION FLAGS completion flags) ;

This asynchronous call is modeled after the InfiniBand atomic Compare and Swap operation. The
cmp_value is compared to the 64 bit value stored at the remote memory location specified in remote_iov.
If the two values are equal, the 64 bit swap_value is stored in the remote memory location. In all cases,

the original 64-bit value stored in the remote memory location is copied to the local_iov.

Endpoint | EVD Extension Type Extension Event Data Type
Initiator Request DAT_EXT_CMP_SWAP_STATUS N/A

DAT_EXTENSION_EVENT
Remote N/A N/A N/A

DAT_EXT_FETCH_AND_ADD_STATUS

24.2.2

dat_ep_post _fetch_and_add()

DAT RETURN

dat _ep post fetch and add(

IN DAT_ EP HANDLE ep_handle,
IN DAT_UINT64 add_value,
IN DAT LMR TRIPLE *local iov,
IN DAT DTO COOKIE user cookie,

IN
IN

This asynchronous call is modeled after the InfiniBand atomic Fetch and Add operation. The add_value is
added to the 64 bit value stored at the remote memory location specified in remote_iov. The original pre-

DAT RMR TRIPLE

*remote iov,

DAT COMPLETION FLAGS completion flags) ;

added 64 bit value stored in the remote memory location is copied to the local_iov.

Endpoint | EVD Extension Type Extension Event Data Type
Initiator Request DAT_EXT_FETCH_ADD_STATUS N/A

DAT_EXTENSION_EVENT
Remote N/A N/A NZA

2-7

	1. Design Overview
	2. Extension Data Structures and Types
	2.1 Modified uDAPL Structures and Types
	2.1.1 struct dat_provider
	2.1.2 DAT_EVENT_DATA
	2.1.3 DAT_EVENT_NUMBER

	2.2 Provider Specific Query Types
	2.3 Sample Extension Structures and Types
	2.3.1 DAT_EXTENSION_FUNC
	2.3.2 DAT_EXT_OP
	2.3.3 DAT_EXT_EVENT_TYPE
	2.3.4 DAT_EXT_FLAGS
	2.3.5 DAT_IMMEDIATE_DATA
	2.3.6 DAT_EXTENSION_DATA

	2.4 Sample Extension APIs
	2.4.1 Immediate Data Extensions
	2.4.1.1 dat_ep_post_write_immed()
	2.4.1.2 dat_ep_post_recv_immed()

	2.4.2 Atomic Extensions
	2.4.2.1 dat_ep_post_cmp_and_swap()
	2.4.2.2 dat_ep_post_fetch_and_add()

