
uDAPL:User Direct Access
Programming Library

Version: 2.0
Date: April 20, 2006

DOCUMENT
STATUS

DAPL-2.0 is an errata-based progress on the ratified DAT-Collaborative
version of the -2.0 document with an addition of Connection
Management for Consumer provided sockets for iWARP & IB verb
extensions semantic and support for DAT extensions.

ABSTRACT The User Direct Access Programming Library (uDAPL) defines a single
set of user-level APIs for all RDMA-capable Transports. The uDAPL
mission is to define a Transport-independent and Platform-standard set
of APIs that exploits RDMA capabilities, such as those present in IB, VI,
and RDDP WG of IETF.

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Chapter 1: Introduction 15

Chapter 2: Terminology 17

Chapter 3: Model 23

Chapter 4: Transport Requirements 25

Chapter 5: User-Level API Requirements 27
Local Resource Model 27
Connection Management 34
Data Transfer Operations Initiation 42
Data Transfer Operation Completions 49
Memory Management 49
Error Detection and Notification 54
Event Model 54
Name Service 57
High Availability (HA) 58

Chapter 6: uDAPL-2.0 API 63
API Conventions 63
Namespace 63
Memory Space 64
Thread, Signal and Exception Handler Safety and Blocking Definitions 64
Thread Safety Definitions 64
Signal and Exception Handler Safety Definitions 65
Design Principles 66
Object Destruction 67
Safety Specification 68

 Local Resources Management 85
Interface Adapter 85
DAT_IA_Open 85
Usage 87
Rationale 88
Model Implications 88
DAT_IA_Close 88
Usage 90
Rationale 90
Model Implications 90
Interface Adapter Attributes 91
Model Implications 94
DAT Extensions Attributes 95
 Page 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
DAPL Provider Attributes 95
DAT_IA_Query 100
Usage 101
Rationale 101
Model Implications 101
Consumer Context 101
DAT_Set_Consumer_Context 101
DAT_Get_Consumer_Context 102
Usage 103
Rationale 103
Model Implications 103
DAT_Get_Handle_Type 103
Usage 104
Rationale 105
Model Implications 105

Event Management 105
Event Model 105
uDAPL versus kDAPL Event Dispatchers 117
Consumer Notification Object 117
DAT_CNO_Create 118
DAT_CNO_Free 119
Usage 119
Rationale 119
Model Implications 119
DAT_CNO_Wait 120
Usage 121
 Rationale 121
 Model Implications 121
DAT_CNO_Modify_Agent 121
DAT_CNO_Query 122
Usage 123
Rationale 123
Model Implications 123
OS Wait Proxy Agent 123
Event Dispatcher 123
DAT_EVD_Create 123
Usage 125
Rationale 125
Model Implications 125
DAT_EVD_Free 126
Usage 126
Rationale 127
Model Implications 127
DAT_EVD_Query 127
 Page 4

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Usage 128
Rationale 128
Model Implications 128
DAT_EVD_Modify_CNO 128
Usage 129
Rationale 129
Model Implications 129
DAT_EVD_Enable 129
DAT_EVD_Disable 129
DAT_EVD_Set_Unwaitable 130
DAT_EVD_Clear_Unwaitable 131
DAT_EVD_Resize 131
Usage 132
Rationale 132
Model Implications 132
DAT_EVD_Wait 132
Usage 135
Rationale 136
Model Implications 136
DAT_EVD_Dequeue 136
Usage 138
Rationale 139
 Model Implications 139
DAT_EVD_Post_SE 139
Usage 140
 Rationale 140
 Model Implications 140

Connection Management 140
Interface Adapter Address 140
Port 141
Connection Qualifier 141
Communicator 141
Service Point 143
Public Service Point 143
DAT_PSP_Create 144
Usage 145
Rationale 147
Model Implications 147
DAT_PSP_Create_Any 147
Usage 149
Rationale 149
Model Implications 149
DAT_PSP_Free 149
Usage 150
 Page 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
Rationale 150
Model Implications 150
DAT_PSP_Query 150
Usage 151
Rationale 151
Model Implications 151
Common Service Point 151
DAT_CSP_Create 152
Usage 153
Rationale 154
Model Implications 154
DAT_CSP_Free 155
Usage 156
Rationale 156
Model Implications 156
DAT_CSP_Query 156
Usage 157
Rationale 157
Model Implications 157
Reserved Service Point 157
DAT_RSP_Create 158
Usage 159
Rationale 160
Model Implications 160
DAT_RSP_Free 160
Usage 161
Rationale 161
Model Implications 161
DAT_RSP_Query 161
Usage 162
Rationale 162
Model Implications 162
Connection Request 162
DAT_CR_Query 162
Usage 163
Rationale 163
Model Implications 163
DAT_CR_Accept 163
Usage 166
Rationale 166
Model Implications 166
DAT_CR_Reject 167
Usage 168
Rationale 168
 Page 6

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Model Implications 168
DAT_CR_Handoff 168
Usage 169

Shared receive Queue 169
DAT_SRQ_Create 169
Usage 171
Rationale 171
Model Implications 171
Shared Receive Queue States 172
Model Implication 172
Shared Receive Queue Attributes 172
Usage 173
Rationale 174
Model Implication 174
DAT_SRQ_Set_LW 174
Usage 175
Rationale 175
Model Implications 175
DAT_SRQ_Free 175
Usage 176
Rationale 176
Model Implications 176
DAT_SRQ_Query 176
Usage 177
Rationale 177
Model Implications 177
DAT_SRQ_Resize 177
Usage 178
Rationale 178
Model Implications 178
DAT_SRQ_Post_Recv 178
Usage 181
Rationale 181
Model Implications 181

Endpoint 182
Endpoint Lifecycle 183
Advice to IB Implementors 192
Deferred Configuration Endpoint 193
Connection Establishment Models 195
Using a Public Service Point with Consumer-Allocated Endpoints 195
Using a Public Service Point with Provider-Allocated Endpoints 196
Using a Reserved Service Point 196
Using a Common Service Point 196
Mixing Connection Models 197
 Page 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
DAT_EP_Create 197
Usage 199
Rationale 200
Model Implications 201
DAT_EP_Create_With_SRQ 202
Usage 204
Rationale 205
Model Implications 206
Endpoint Attributes 207
Usage 210
Rationale 210
Model Implication 211
Endpoint States 212
Usage 213
Rationale 213
Model Implications 214
DAT_EP_Free 214
Usage 215
Rationale 215
Model Implications 215
DAT_EP_Get_Status 215
Usage 217
Rationale 217
Model Implications 217
DAT_EP_Query 217
Usage 218
Rationale 218
Model Implications 218
DAT_EP_Recv_Query 218
Usage 219
Rationale 219
Model Implications 219
DAT_EP_Modify 220
Usage 227
Rationale 228
Model Implications 228
DAT_EP_Set_Watermark 228
Usage 229
Rationale 229
Model Implications 229
DAT_EP_Connect 230
Usage 233
Rationale 233
Model Implications 233
 Page 8

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

DAT_EP_Common_Connect 234
Usage 237
Rationale 237
Model Implications 237
DAT_EP_Dup_Connect 239
Usage 241
Rationale 242
Model Implications 242
DAT_EP_Disconnect 242
Usage 244
Rationale 244
Model Implications 244
DAT_EP_Reset 246
Usage 247
Rationale 247
Model Implications 247
Data Transfer Operations 247
Usage 247
DAT_EP_Post_Send 247
Usage 250
Rationale 250
Model Implications 250
DAT_EP_Post_Send_with_Invalidate 250
Usage 254
Rationale 254
Model Implications 254
DAT_EP_Post_Recv 254
Usage 257
Rationale 257
Model Implications 257
DAT_EP_Post_RDMA_Read 257
Usage 260
Rationale 261
Model Implications 261
DAT_EP_Post_RDMA_Read_to_RMR 262
Usage 264
Rationale 264
Model Implications 265
DAT_EP_Post_RDMA_Write 265
Usage 268
Rationale 269
Model Implications 269

Memory Management 269
Protection Zone 269
 Page 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
DAT_PZ_Create 269
Usage 270
Rationale 270
Model Implications 270
DAT_PZ_Free 270
Usage 271
Rationale 271
Model Implications 271
DAT_PZ_Query 271
Usage 272
Rationale 272
Model Implications 272
Local Memory Region 272
DAT_LMR_Create 272
Usage 275
Rationale 275
Model Implications 275
DAT_LMR_Free 277
Usage 278
Rationale 278
Model Implications 278
DAT_LMR_Query 278
Usage 279
Rationale 279
Model Implications 279
Remote Memory Region 279
DAT_RMR_Create 279
Usage 280
Rationale 280
Model Implications 280
DAT_RMR_Create_For_Ep 280
Usage 281
Rationale 281
Model Implications 281
DAT_RMR_Free 281
Usage 282
Rationale 282
Model Implications 282
DAT_RMR_Query 282
Usage 283
Rationale 283
Model Implications 283
DAT_RMR_Bind 283
Usage 287
 Page 10

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Rationale 287
Model Implications 287
Non-Coherent Memory Support 288
DAT_LMR_Sync_RDMA_Read 288
Usage 289
Rationale 289
Model Implications 289
DAT_LMR_Sync_RDMA_Write 289
Usage 291
Rationale 291
Model Implications 291

Completions 291
Completion Events and Posting Interactions 291
Completion Status 295
Usage 299
Completion Status Transport Mappings 301

Operating System Specific Notes 303
Unix® Operating System Specific Notes 303
Windows Operating System Specific Notes 303

Chapter 7: Error Handling 305
DAT_STRERROR 305
Usage 306
Rationale 306
Model Implications 306

Chapter 8: uDAPL Provider Management 307
Overview 307
Interface Adapter 307
Provider Multiple Libraries 307
Provider Polymorphism 308
Registry Implementation 309

Registry APIs 309
DAT_Provider Structure 310
Consumer Exposed APIs 310
DAT_Registry_List_Providers 310
DAT_Registry_Providers_Related 312
Usage 313
Rationale 313
Model Implications 313
Consumer Nonexposed APIs 313
DAT_Registry_Add_Provider 313
DAT_Registry_Remove_Provider 314
 Page 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
Provider-Supplied APIs 314
DAT_Provider_Init 315
DAT_Provider_Fini 315

Dat.h API Version and Thread Safety Auto Support 316
Compile Time API Version Support 316
Thread Safety Support 316
Version Support for IA open 316

Provider Registry Guidelines 317
Provider Installation Advice 317
Load on Demand 319
Dynamic Provider Registration 319
Static Registry 320
Static Registry Entry Contents 320
Static Registry Editing 321
Unix and Windows Static Registries 321
Other Static Registry Formats 324
RedHat RPM Installation Advice 324
General Installation 324
Editing dat.conf File 324
Interaction with System Registry 324
Setting the Default Provider 325
Installation of Multiple Versions of the Provider 325

Chapter 9: DAT Name Service 327
Advice to Consumers 328
Find IA for a local IA address 328
Find IA for a local IA address 328
Find IA to reach remote IA address 329

Appendix A: uDAPL-2.0 Headers 331
udat.h 331
udat_config.h 343
dat_platform_specific.h 346
dat.h 353
Generic Status Codes 395
udat_vendor_specific.h 407
dat_vendor_specific.h 409

Appendix B: uDAPL-2.0 Registration Headers 413
DAT Registry 413
udat_redirection.h 417
 Page 12

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_redirection.h 427
 Page 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 Page 14

uDAPL Document Introduction Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 1: INTRODUCTION

Over the last several years, multiple networks appeared that provide
RDMA capabilities. Some of them define their own APIs and some of them
do not define APIs at all. Users of these networks who develop
applications that take advantage of the RDMA semantics want to have a
common set of APIs for all of these networks. The work of the DAT
Collaborative fills this need.

Application domains at which the DAT Collaborative-developed APIs are
targeted are as follows:

1) DAFS

2) Heterogeneous clusters/databases

3) Homogeneous clusters/databases

4) Sockets that use RDMA capabilities (SDP)

5) Message Passing Interface (MPI)

6) SCSI RDMA Protocol (SRP)

7) iSCSI extensions for RDMA (iSER)
The DAT Collaborative is currently considering the following Transports that provide
RDMA capabilities:
1) InfiniBand

2) VI Architecture

3) iWARP which is currently under development by RDDP WG of IETF
for IP-based networks.
 Page 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Introduction Revision: April 20, 2006
VERSION 2.0
 Page 16

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 2: TERMINOLOGY

This chapter defines the terms that the Direct Access Transport APIs are
using.

Backlog A queue of incoming Connection Requests associated with a Connection
Qualifier of an Interface Adapter. The size of the backlog specifies the
upper bound on the number of pending Connection Request instances the
Provider needs to support at any one time.

Barrier Fence An indicator that the posted operation to a connected Endpoint shall not
be processed until prior potentially conflicting operations on the same
connection are completed.

Class of Service An enumerator that can be used to specify the quality of network service
requested for a connection.

Connect Request Handoff Passing a connect request from a uDAPL consumer to another DAT
consumer strictly within the context of a single DAT provider instance and
the same Interface Adapter on the same host.

Connection An association between a pair of Endpoints such that data of posted data-
transfer operation requests of either Endpoint arrive at the other Endpoint
of the Connection.

Connection Management A portion of DAT Provider (software, hardware, and the combination of the
two) that is used for establishing, maintaining, and releasing connections.

Connection Qualifier A value that allows a Connection Manager to associate an incoming
Connection request with the entity providing the service.

Consumer Context A Consumer-supplied value that can be associated with an instance of
any DAT Object. It can be used to correlate the DAT Object with
Consumer data structures.

Consumer Notification Object
(CNO)

A DAT IA-scope object that can be associated with a set of DAT Event
Dispatchers so that under certain conditions (under consumer control),
arrival of Notification Events on those Event Queues causes activation of
the CNO. Consumers can wait for notification upon a CNO. Additionally,
a CNO can pass through notifications to OS-dependent synchronization
methods using an OS Wait Proxy Agent.

DAT Consumer An application that requires Direct Access Transport services by opening
an Interface Adapter.

DAT Handle A programmatic constuct that represents the authorization of a Consumer
to operate on a specific data structure internal to the DAT Provider.

DAT Provider The Provider of the Transport services for a Direct Access application.

Data Transfer Completion
(DTC)

The status of the completed data transfer operation.
 Page 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0
Data Transfer Operation (DTO) The requested data movement transfer submitted to a DAT Provider.

DTO Cookie A Consumer-supplied identifier for a Data Transfer Operation that allows
a Consumer to uniquely identify the DTO when it completes.

Dynamic Registry The information repository maintained on a per-process basis by the
Registry. It reflects Providers actually loaded within the context of the
process.

Endpoint The local part of a Connection that supports posting DTO requests and
receives.

Event A structure or record that is delivered to the Consumer through an Event
Dispatcher to provide notice of some kind. Types of Events include DTO
completions, connection state changes, asynchronous errors, and
software events generated by the Consumer.

Event Dispatcher A DAT Object that conceptually merges events from one or more Event
Streams. These events can be dequeued by the Consumer directly via
dat_evd_dequeue or dat_evd_wait. The Event Dispatcher is responsible
for completion of transport-specific fetching and handshaking for the
events it collects. Each event is delivered to the Consumer exactly once.

Event Stream A source of events for Event Dispatcher: DTO completions, Connection
Requests for passive side, connection reject notifications for active side,
connection establishment completion notifications, disconnect
notifications, connection errors, Connection Request timeouts, channel
adapter asynchronous errors, remote memory bind completion
notifications, and Consumer-generated notifications. An Event Stream is
the conduit between DAT Objects that generates events and Event
Dispatchers that consume events.

Fabric A network with RDMA capabilities.

Host One or more Interface Adapters controlled by a single memory/CPU
complex.

Interface Adapter (IA) A host resident device that transfers messages to and from the host
memory associated with a specific Endpoint and a Fabric.

IA Address The Interface Adapter Address on the Fabric.

IOV The Input/Output Vector; an array of LMR Triplets that specifies the local
buffer for a DTO or an RMR Bind.

kDAPL Provider The Provider of the Transport services for a kernel-level Direct Access
application.

LMR Alignment A characteristic of an Interface Adapter that specifies the boundaries on
which Local Memory Regions are actually enabled. If the granularity is
4 KB, then for each mapped region, actual registered memory starts and
ends on the 4-KB boundary.

LMR Granularity A characteristic of an Interface Adapter that specifies the minimum size
with which Local Memory Regions actually map local memory. If the
granularity is 4 KB, each mapped region must be a multiple of 4 KB.
 Page 18

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

LMR Triplet A type used to specify a slice within a Local Memory Region. Each LMR
Triplet specifies the LMR Context, the virtual address, and a size.

Local Memory Region Context
(LMR Context)

The Provider-generated handle for a Consumer-registered arbitrary size,
contiguous virtual memory. The Consumer uses it to indicate the Memory
Region for the local memory access operations. For example, it is used
for DTOs on a Connection whose local Endpoint belongs to the Interface
Adapter.

Local Memory Region Virtual
Address (LMR VA)

A Virtual Address that specifies the local memory address within a region
of memory represented by the LMR Memory Region Context.

Memory Permission An indicator of what accesses are allowed to the memory (Local
read/write, RDMA read/write).

Memory Protection An indicator of who can access the memory.

Memory Region An arbitrarily sized, virtually contiguous area of memory in the
Consumer’s address space that was registered, enabling Interface
Adapter local access and, optionally, remote access.

Memory Registration The process of enabling Interface Adapter access to local memory by
creating a Local Memory Region (LMR) and then optionally enabling
remote access to any portion of it by creating one or more Remote
Memory Regions (RMRs).

Notification Event All events are Notification Events, except for DTO and RMR completion
events whose completion flag at the post specify Notification
Suppression, or for Recv completions whose matching Send do not
specify Solicited Wait. An arrival of a Notification Event triggers
unblocking of a waiter on EVD if EVD is configured for Notification Events.

Non-Notification Event DTO and RMR completion events whose completion flag at the post does
not specify Notification Suppression, or for Recv completions whose
matching Send does not specify Solicited Wait. An arrival of a Non-
Notification Event does not unblock a waiter on EVD if EVD is configured
for Notification events.

Operation Types The Send, Receive, RDMA Read, or RDMA Write DTOs and RMR Binds.

OS Wait Proxy Agent An object that acts as a proxy for an OS-specific synchronization
resource. Possibilities include a semaphore, a message queue, or a file
descriptor. The proxy agent allows a CNO (Consumer Notification Object)
to trigger the target resource without knowing the OS-specific methods for
doing so. How consumers interact with the OS-specific resource is
outside the scope of the uDAPL specification.

Port Qualifier A Network Identifier of the specific Endpoint that differentiates it from
other Endpoints on the same IA Address. This is the identifier of an actual
Endpoint. This contrasts with a Service Point Connection Qualifier, which
can be used to request a connection or listen for Connection Requests.

Private Data The Consumer Data that is opaque to the CM that is passed between local
and remote Consumers of a connection. Active side Connection request
and Passive side Connection Acception support Consumer Private Data.
 Page 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0
Consumers can use Private Data to “piggy-back” information over the CM
message exchange.

Protection Zone A mechanism for association Endpoints and registered LMR and RMR
memory of an Interface Adapter that defines protection for local and
remote memory accesses by DTO operations.

Public Service Point A Persistent Service Point whose associated Connection Qualifier is
advertised to other hosts, and which can support multiple Connection
Requests.

RDMA Remote Direct Memory Access—The access of local memory by the
remote Endpoint. There are two RDMA operations: RDMA Read and
RDMA Write.

RDMA Memory Region Con-
text (RMR Context)

A representation for an arbitrarily sized, registered contiguous virtual
space that belongs to an Interface Adapter so that it can support Remote
DMA operations on the Connection whose local Endpoint belongs to the
Interface Adapter.

RDMA Memory Region Target
Address (RMR Target Ad-

dress)

The Address that specifies the memory address within a region of memory
represented by RDMA Memory Region Context. The specification can be
either by Interface Adapter Virtual Address or an offset from the start of the
memory represented by the RMR Context.

Registry An active software component that is instantiated at most once per
running process. It is responsible for routing dat_ia_open() calls, auto-
loading of Provider libraries, and accepting dynamic registration calls from
Providers. The registry accesses information from the Static Registry and
maintains the information in the Dynamic Registry.

Reliable Connection A connection type such that data of posted DTOs of either Endpoint of the
Connection reliably arrives at the other Endpoint of the Connection
uncorrupted in the absence of errors and in the order defined by the
reliable connection ordering rules.

Remote Memory Region
(RMR)

A window that can be bound to a section of a Local Memory Region to
enable remote accesses.

Reserved Service Point A Service Point whose associated Connection Qualifier is not advertised
to other hosts. Its knowledge is only known by an application privately for
peer-to-peer or application internally negotiated connections.

Request Queue (RQ) An internal opaque queue of a connected Endpoint on which DTO
requests, DTO receives, and RMR Binds are posted. One RQ, which is
commonly called Send Queue, collects send, RDMA Read, and RDMA
Write DTO requests and RMR Binds. Another RQ, which is commonly
called Receive Queue, collects receive DTOs.

RMR Alignment A characteristic of an Interface Adapter that specifies the boundaries on
which Remote Memory Regions exported by this host are actually
enabled.

RMR Bind The process of modifying what an RMR references to a local memory and
permissions. The Bind specifies the referenced region and new
 Page 20

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

permissions. Each Bind results in a new RMR Context, and invalidates
previous RMR Contexts.

RMR Cookie A Consumer-supplied identifier for an RMR Bind operation that allows a
Consumer to uniquely identify the RMR Bind when it completes.

RMR Granularity A characteristic of an Interface Adapter that specifies the minimum size
with which Remote Memory Regions exported by this host are actually
enabled. For an adapter that effectively had no windowing capability, the
granularity is the size of local memory.

RMR Triplet A type used to specify a slice within a Remote Memory Region. Each
RMR Triplet specifies the RMR Context, the target address, and a size.

Service Point A DAT Object associated with Connection Qualifiers that is generated in
Connection Requests for Consumers or directly establishes connections
for Consumers.

Shared Receive Queue (SRQ) A DAT Object that supplies DTO receives for multiple EPs. The Consumer
supplies buffers to a single SRQ, rather than to the Receive Queue (RQ)
of each EP. This allows pooling of available buffers across multiple EPs
which can reduce the number of pre-committed buffers required.

Software Event An Event generated for an Event Dispatcher by the Consumer, as
opposed to those generated by the Interface Adapter.

Solicited Wait A modifier for a send DTO request submitted to an Endpoint of the
Connection. It specifies that the completion of the matching receive DTO
on the remote side of the Connection generate a notification receive DTO
Completion Event. All other receive DTO completions on that Connection
complete with a non-notification Event.

Static Registry System-wide information repository used by the Registry to support auto-
loading of Providers.

uDAPL Provider The Provider of the Transport services for a user-level Direct Access
application.

Upper-Level Protocol (ULP) The higher level protocol applications that use DAT APIs. Examples of
these are DAFS, SDP, SRP, and MPI.

Unsignaled Completion A modifier for a DTO or RMR Bind submitted to an Endpoint of the
Connection that specifies that completion of the DTO or RMR Bind
generates a non-notification Completion Event for an associated Event
Dispatcher.
 Page 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Terminology Revision: April 20, 2006
VERSION 2.0
 Page 22

uDAPL Document Model Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 3: MODEL

This chapter outlines the Direct Access Transport (DAT) Model.

The DAT Model is shown in Figure 1. There are two significant external
interfaces to a DAT service Provider: One interface defines the boundary
between the consumer of a set of transport services and the local
transport Provider of these services. In the DAT model, this is the interface
between the DAT Consumer and the uDAPL Provider.

The other interface defines the set of interactions between local and
remote transport Providers that enables the local and remote Providers to
offer a set of transport services between the local and remote transport
consumers. In the DAT model, this is the set of interactions between a
local uDAPL Provider and a remote uDAPL Provider that is visible to the
local DAT Consumer and/or remote DAT Consumer.

This document defines the minimal set of required semantics for the
interaction between uDAPL Providers that is visible to the local DAT
Consumer. The transport protocol-specific details of the uDAPL Provider-
to-uDAPL Provider interactions for specific transports is outside the scope
of this document.These lower-level, transport-specific details are not
defined here; it is expected that they are provided as part of the
specification of a particular transport protocol (for example, IB, VI/TCP,
FC-VI, and iWARP).

The DAT Collaborative’s goal is to define the interface between uDAPL
Provider and DAT Consumer. uDAPL defines the API for the kernel level
when uDAPL Provider is within OS and below, while DAPL defines the
API for the user level when DAT Consumer is completely within
application space.

Each Interface Adapter is controlled by exactly one uDAPL Provider. Each
uDAPL Provider can control multiple Interface Adapters. There can be
multiple DAT Providers controlling disjoint sets of Interface Adapters on a
host.

Figure 1, depicts the DAT framework and relationship between DAT and
fabric protocols.

Figure 2 shows the DAT kernel API architecture model, including uDAPL
Consumer, uDAPL Provider, OS, and Interface Adapter.
 Page 23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Model Revision: April 20, 2006
VERSION 2.0
Figure 1 Direct Access Transport Framework

Figure 2 DAT User Architecture Model

DAT Provider

Application

DAT Provider

Fabric

DAT Consumer

DAT Provider

DAT Provider

DAT Consumer

Direct Access

Transport Services

Provider specific
wire protocol
(e.g. FC-VI, VI/TCP,
IB, iWARP)

DAT Provider

Application

DAT Provider

Fabric

DAT Consumer

DAT Provider

DAT Provider

DAT Consumer

Direct Access

Transport Services

Provider specific
wire protocol
(e.g. FC-VI, VI/TCP,
IB, iWARP)

Kernel

Hardware

User

DAT-compliant
Interface Adapter

DAT-compliant
IA driver

Data

Control

Application

uDAPL

Application

uDAPL

kDAPL
 Page 24

uDAPL Document Transport Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 4: TRANSPORT REQUIREMENTS

This chapter states the transport requirements for DAT Provider-to-
Provider interaction. The current version states the transport
requirements for DAT:

1) DAT supports a connection that provides send-recv message
transfers and RDMA Read and Write operations.

2) DAT supports reliable connection, which provides the following fea-
tures:

a) All data transfer operations submitted to the DAT Provider com-
plete successfully in the absence of errors, with data delivered
uncorrupted, in the order defined by ordering rules.

b) Corruption of the data delivered to the Consumer (local one for
RDMA Read) is detected as an error and reported to the Con-
sumer.

c) Data loss (inability to deliver data to the remote Endpoint of the
Connection (from remote to local Endpoint for RDMA Read) is
detected as an error and reported to the Consumer.

d) Upon detection of an error, the connection is broken and all out-
standing and in-progress data transfer operations are completed
with an error.

e) There is a one-to-one correspondence between send operations
on one Endpoint of the Connection and recv operations on the
other Endpoint of the Connection.

f) There is no correspondence between RDMA operations on one
Endpoint of the Connection and recv or send data transfer opera-
tion on the other Endpoint of the Connection.

g) Data Transfer Operation Completion means that the Consumer
can reclaim resources associated with the operation, including
the memory that contains the data.

h) Ordering rules:

i) The data payload for the send operation matching a receive
operation must be delivered into the receiver-indicated mem-
ory buffer without errors prior to the receive completion.

ii) Receive operations on a Connection must be completed in
the order of posting of their corresponding sends.
 Page 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Transport Requirements Revision: April 20, 2006
VERSION 2.0
iii) Each RDMA Write operation posted on a Connection prior to a
send operation must have its data payload delivered to the
target memory region prior to the completion of the receive
operation matching that send.

3) DAT supports multiple connections between the same or different
pairs of nodes (client server pairs).

4) An RDMA Memory Region Context (RMR Context) supports RDMA
operations for the set of DAT Connections that are associated with it.
The association between a Connection and an RMR Context is estab-
lished by the local Endpoint of the Connection where the Memory
Region resides.

5) The same RMR Context can be associated with multiple connections.
In addition, a connection can have multiple RMR Contexts associated
with it.

6) The DAT Provider allows the DAT Consumer to create multiple RMR
Contexts in the same memory.

7) DAT supports connection management, including the client-server
connection establishment and the connection termination by either
side of the Connection.
 Page 26

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 5: USER-LEVEL API REQUIREMENTS

This chapter defines the requirements for the user-level Direct Access
Transport APIs (uDAPL-2.0).

uDAPL-2.0 Consumer to Provider API requirements are:

5.1 LOCAL RESOURCE MODEL

1) Backward Compatibility

a) A minor version upgrade guarantees that all uDAPL-compliant
applications continue to work with, at most, recompiling.

b) A major revision can deprecate functions.

c) A support for a function can be dropped at a major revision after it
is deprecated for a least one major revision.

d) Errata and any revision can fix ambiguities of any previous ver-
sion.

2) There is a one-to-one correspondence between the uDAPL Provider
library and Interface Adapter:

a) The uDAPL Provider library is open when the Interface Adapter is
open.

b) The uDAPL Provider library is closed when the Interface Adapter
is closed.

c) The Interface Adapter is the only DAT Object that can open and
close the uDAPL Provider library.

d) (Nonrequirement) uDAPL does not require a DAT Provider Ob-
ject.

i) uDAPL defines an Interface Adapter Object.
e) uDAPL provides support for the Consumer to query Interface

Adapter attributes.

f) Closure of the open instance of an Interface Adapter is cascading
and automatically closes all DAT Objects of the instance of the In-
terface Adapter.

g) Closure of all other DAT Objects is restricted:

i) Before closing a non-Interface Adapter DAT Object, the Con-
sumer should make sure it is not in use (by some other DAT
Object, including queues and in-progress and pending
DTOs).
 Page 27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
ii) uDAPL rejects an “improper” closure of a DAT Object that is
still in use by other DAT Objects.

h) Multiple uDAPL Provider libraries can share binaries and loadable
modules:

i) A single image of the uDAPL Provider library in the OS can be
sufficient to open and close multiple Interface Adapters.

ii) A single Provider Library can present a single device as multi-
ple Interface Adapters. For example, a Provider Library could
present each port of an InfiniBand HCA as a distinct Interface
Adapter.

3) uDAPL supports multiple Interface Adapters on a host:

a) (Nonrequirement) uDAPL is not required to support sharing of
DAT Objects among Interface Adapters.

i) (Nonrequirement) uDAPL is not required to support sharing of
Service Points across multiple Interface Adapters (waiting for
incoming Connection Requests across multiple Interface
Adapters)

ii) uDAPL shall support sharing of an OS Wait Proxy Agent
across multiple providers.

iii) (Negative requirement) uDAPL provides no direct mechanism
for a Consumer to wait for events from different Interface
Adapters:
– A Consumer Notification Object (CNO) is valid only for

Event Dispatchers from a single Interface Adapter.
– A uDAPL Consumer can use OS-specific synchronization

methods to wait for Events from multiple Interface
Adapters.

– uDAPL specifies OS Wait Proxy Agent for an Event
Dispatcher CNO for invoking the OS-specific
synchronization method with the Event Dispatcher Handle
that caused the invocation.

– uDAPL Provider cannot claim exclusive ownership of the
targeted OS-specific synchronization resource. The
consumer must be free to feed notification of non-DAT
Events to the same synchronization resource.

b) (Nonrequirement) uDAPL is not required to support sharing of
DAT Objects among multiple open instances of the same Inter-
face Adapter, except for Event Dispatcher for asynchronous er-
rors:

i) uDAPL supports the API that allows the Consumer to request
a shared or private Event Dispatcher for an open instance of
Interface Adapter for asynchronous error notifications:
 Page 28

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– uDAPL filters Asynchronous error notification to the
instance of the open Interface Adapter that originated the
error when it is known (for example, EVD overflow for the
instance of IA).

– uDAPL delivers common asynchronous errors to the
Event Dispatchers for asynchronous errors for all open
instances of the Interface Adapter (for example, IA was
disconnected).

c) (Nonrequirement) uDAPL Provider can define a default asynchro-
nous error handler. which is “out of scope” for the current uDAPL
Consumer. This is an assurance to the Consumer that there is a
handler for asynchronous errors, but that its handler is not in an
address space where this Consumer can access it.

i) The Provider default asynchronous error handler can be out
of scope for a uDAPL Consumer.

ii) The Provider default asynchronous error handler can be in
kernel space.

iii) All asynchronous errors specific to the Consumer open in-
stance of an Interface Adapter shall be delivered to the de-
fault asynchronous error handler if the Consumer requested
default asynchronous error handler.

d) uDAPL defines a uDAPL Provider library-independent method for
the registration/deregistration of the uDAPL Provider Library and
for discovery and enumeration of all DAT-capable Interface
Adapters on a host:

i) DAT Collaborative provides APIs, source code, and headers
for registration and deregistration of the uDAPL Provider li-
brary and enumeration of Interface Adapters:
– uDAPL Provider library registration, deregistration, and

Interface Adapter enumeration can be platform (OS)
dependent.
– uDAPL Provider library registration consists of naming

a Provider-specific library and creating an entry in the
list of Interface Adapters on the host.

– uDAPL supports uDAPL Provider library dynamic
registration, deregistration, and Interface Adapter
discovery and enumeration, even if a Provider library
is statically linked.

– There can be, at most, one uDAPL Provider library
registration, deregistration, and Interface Adapter
discovery and enumeration code running on a host.
 Page 29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
– A provider-independent, OS specific, registry library
implements provider-independent portions of dat_ia_open
for Consumers.
– The registry executes on a per-process basis.
– The registry loads Providers into memory and

initializes them for each Interface Adapter (IA) Name
opened by a Consumer.

– The registry does not load Providers into memory or
initialize them until requested to do so by a Consumer.

– The registry utilizes a system-wide configuration file,
known as the static registry, to determine which
Provider library to load given a supplied IA Name.

– The static registry must be editable by the System
Administrator, independent of Provider installation or
uninstalls.

– The static registry specifies a default Provider to load
given an input key of the IA Name, the API version,
and whether thread safety is required.

– To support testing, the static registry must allow other
versions of a Provider to be entered, and must allow
for an override to specify an alternate Provider to be
selected for a given key.

– All code within a Consumer must be compiled with the
same version of the DAT API. The static registry
rejects dat_ia_open calls with conflicting version
information.

– The registry must support Providers compiled with
different versions of the dat.h. This includes both
versions that are both earlier and later than the
Consumer's version. This allows for separate
distribution of Consumer executables and Provider
libraries.

– The registry can be OS-dependent. The location of the
static registry can vary by OS, as can the method of
dynamically loading a Provider library.

– uDAPL Registration of DAT Provider APIs is out of scope
of the uDAPL Provider Library.

e) uDAPL supports Polymorphic interfaces without explicitly specify-
ing an Interface Adapter for each API function call.

i) The uDAPL Provider library has a function table for uDAPL
defined APIs:
– The function table can include a pointer to the Provider or

transport-specific extensions:
 Page 30

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– This ensures that multiple vendor extension definitions
do not collide on a host.

ii) Each uDAPL Provider library-created Object for which the
Consumer has a handle has a pointer into the Provider library
function table.

iii) The DAT Collaborative provides platform-independent mac-
ros that redirect uDAPL function calls to the proper Provider li-
brary function table:
– uDAPL Providers shall include these macros with their

uDAPL Provider library.
4) Each uDAPL Consumer on a host opens the uDAPL Provider library.

a) Multiple uDAPL Consumers share the same address space,
name space, and uDAPL Provider libraries.

b) The uDAPL Provider library can be shared between multiple
uDAPL Consumers.

c) The uDAPL Provider library (Interface Adapter) can be opened
and closed multiple times.

5) uDAPL supports multiple Interface Adapters on a host:

a) uDAPL Consumers shall share memory protections for multiple
host processors and memory.

b) uDAPL shall provide OS ability to schedule uDAPL Consumer
processes/threads on any available processor according to OS
policy.

6) (Nonrequirement) uDAPL is not required to support Reliable Data-
grams:

a) The DAT Collaborative will revisit Reliable Datagrams at a later
time.

7) (Nonrequirement) The uDAPL Provider Library is not required to be
thread safe:

a) If the platform convention is to be thread safe, the Consumer and
the uDAPL Provider Library adhere to it.

b) uDAPL shall support the capability for Provider vendors to deploy
both thread-safe and non-thread-safe libraries.

i) Vendors can use a naming convention for the Provider librar-
ies that indicates whether the library is thread safe.

c) uDAPL shall support queryable Provider attributes that indicate
whether a uDAPL provider library is thread safe.

d) uDAPL vendor shall document whether the Provider library is
thread safe.
 Page 31

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
8) uDAPL shall provide support for multiple DAT Consumers using the
same DAT Provider:

a) uDAPL shall support passing connection among multiple uDAPL
Consumers of the same DAT Provider

i) uDAPL shall support Connection handoff (see Section 5.2,
“Connection Management,” on page 34).

ii) (Nonrequirement) uDAPL is not required to support Connect
Request Redirection.

b) (Nonrequirement) uDAPL is not required to support Object Shar-
ing

i) There is a need to be able to pass control of connected and
active Endpoints between different uDAPL Consumers. The
DAT Collaborative will revisit Object Sharing at a later time.

c) (Negative Requirement) uDAPL shall not provide Process inherit-
ance of DAT object for DAT Consumers

i) A child process does not inherit any DAT objects over fork.
ii) A child process shall not use any DAT handles of the parent

process unless uDAPL specifically allows sharing of the han-
dle of that object type between DAT Consumers.

iii) Neither parent nor a child process shall crash over exec due
to the opening or closing of a DAT library by a child, sibling, or
parent.

iv) A child process can become a DAT Consumer (uDAPL/kDA-
PL) of the same or different DAT Provider without any effect
on the parent (with the potential exception of sharing underly-
ing Provider and IA resources).

9) When a Consumer process terminates abnormally (without the
chance to release the resources it was using), the uDAPL Provider
shall free up the kernel resources and hardware adapter resources
that were in use by that process.

a) (Negative requirement) uDAPL Provider is not required to reclaim
kernel and Interface Adapter resources immediately when the
Consumer process crashes.

b) uDAPL Provider should reclaim kernel and Interface Adapter re-
sources of the abnormally terminated DAT Consumers before re-
turning an “insufficient resources” failure.

i) uDAPL Providers should reclaim resources during the Inter-
face Adapter open and close operations.
 Page 32

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

ii) (Nonrequirement) uDAPL Providers are encouraged to re-
claim resources (clean-up and garbage collection) at the finer
granularity than only at the opening and closing of an Inter-
face Adapter.

iii) Insufficient Resources error can be transitory. In addition to
the time delay for the collecting resources of abnormally ter-
minated DAT Consumers, the resources can be in use by oth-
er applications and DAT Consumers, or in the process of
being cleaned up by normally terminating applications and
DAT Consumers that use the shared Interface Adapter or
Provider.

c) (Nonrequirement) uDAPL Provider is not responsible for identify-
ing abnormally terminated DAT Consumers:

i) uDAPL Provider shall rely on the host Operating System for
identifying abnormally terminated DAT Consumers.

ii) uDAPL Provider is not responsible for releasing resources
that are the responsibility of the host OS to release.

d) When terminating normally, it is recommended that Consumer
processes release all resources themselves. Consumers shall
not rely on the Provider's abnormal-termination cleanup capabili-
ties, because they might not clean up immediately or completely.

e) Upon process termination completion (as defined by the OS), all
uDAPL process resources must be recovered by the uDAPL Pro-
vider:

i) Upon process termination, no access to the terminated pro-
cess memory and other resources are allowed locally or re-
motely:
– To minimize the time window for remote accesses to

terminating process memory, uDAPL implementation is
encouraged to transition all Endpoints from the connected
to the error state first, before doing resource recovery.
– Consumer should not assume that the terminating

process memory, including the shared one between
the terminating process and others, is not modified by
remote host via RDMA or previously posted local
Recvs.

– The DAT Provider must work with the Host OS to ensure
that all pending DTOs and RMR Contexts that enable
access to consumer memory are invalidated or otherwise
disposed of before process termination is completed.
There must be NO possibility that a stale DTO or RMR
Context enables access to physical memory that was
reassigned to a new purpose.
 Page 33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
10) Provider memory allocation should not interfere with Consumer
memory allocation.

a) Provider should avoid any memory allocation/deallocation in the
operations on the performance path.

b) Provider should not do memory allocation from the OS memory
heap that can be used by Consumer.

11) When a Consumer thread terminates abnormally or encounters a
synchronous or asynchronous exception the Consumer may recover
uDAPL resources by closing the interface adaptor handle (IA handle)
associated with the uDAPL objects created by this thread. Providers
guarantee cleanup after thread death or exception only when the con-
sumer guarantees that DAT calls referring to the IA handle and its as-
sociated objects are serialized (only one DAT call on the IA handle or
any of its descendent handles is active at a time).

Providers must make the following guarantees:
a) successful completion of the dat_ia_close operation indicates op-

erations on uDAPL objects associated with different IA handles
may continue unaffected.

b) A return code of DAT_INTERNAL_ERROR from dat_ia_close in-
dicates that unrecoverable damage to the provider has been de-
tected and the Consumer must resort to process termination as
described in 9) on page 32 to recover uDAPL resources.

12) uDAPL supports OS-independent and OS-dependent ways to un-
block a waiter

a) uDAPL Provider shall unblock a waiter (EVD or its associated
CNO) when Software event is posted to the EVD.

b) uDAPL Provider should unblock a waiter (EVD or its associated
CNO) when an exception (interrupt or signal) happens.

i) (non-Requirement) uDAPL Provider does not provide any
guarantee for handling a race condition between exception
occurence and wait on the EVD or associated CNO, or arriv-
ing of an event on EVD.

13) uDAPL defines which uDAPL calls are signal handler and exception
handler safe.Provider can provide support for kDAPL APIs to privi-
leged user mode Consumers.

5.2 CONNECTION MANAGEMENT
1)1) DAT supports connection management between a uDAPL Consumer

and a remote Consumer of an RDMA Transport.

a) A remote Consumer can be uDAPL Consumer, kDAPL Consum-
er, or another application of the same RDMA Transport.
 Page 34

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

2) (Nonrequirement) uDAPL is not required to support synchronous
functions for connection management:

a) If a uDAPL Consumer wants to block, it must block on the desig-
nated connection Event Dispatcher or the Consumer Notification
Object (CNO) the Event Dispatcher triggers.

b) The DAT Collaborative will revisit synchronous connection man-
agement at a later time.

3) uDAPL supports the Connection Management API for two-stage con-
nection establishment:

a) Stage 1: The active side requests a connection.

b) Stage 2: The passive side “listens” for Connection Requests and
accepts, rejects or hands them off.

c) (Nonrequirement) uDAPL does not expose the “ready-to-use”
(RTU) message from the active to passive side:

• Both active and passive sides are notified of the connection
establishment completion by delivering the Connection
Establishment Completion event to the Event Dispatchers
specified by the Consumers on each side.

4) DAPL supports socket-like transport-independent connection man-
agement

a) Stage 1: The active side requests a connection from Endpoint
that has the parameters required for a socket for connection set-
up.

i) domain
ii) type
iii) protocol
iv) IP Address
v) port

b) Stage 2: The passive side “listens” for Connection Requests on
the Service Point that has parameters required for a socket to lis-
ten on and either accepts or rejects the Connection Request

c) Both active and passive sides are notified of the connection es-
tablishment completion by delivering the Connection Establish-
ment Completion event to the Connection Event Dispatchers
specified by the Consumers for the Endpoints that got connected
on each side.

5) Endpoint management:

a) uDAPL provides the API for Endpoint creation and destruction.
 Page 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
b) (Nonrequirement) Endpoint creation does not require binding it to
an Interface Adapter port.

c) uDAPL binds an Endpoint to an IA port when a connection is es-
tablished on the Endpoint.

6) Active/passive connection establishment model:

a) uDAPL provides the API for active-side explicit Endpoint creation
(not bound to an IA port).

b) (Nonrequirement) uDAPL is not required to support active-side
implicit Endpoint creation.

c) uDAPL provides the API for passive-side explicit and implicit End-
point creation (not bound to IA port).

d) uDAPL provides the API for passive-side support to listen for a
Connection Request on a Connection Qualifier–Service Point Ob-
ject.

e) (Nonrequirement) uDAPL is not required to provide support for
active-side canceling of pending Connection Requests.

f) uDAPL supports the following attributes for active-side requests
for a connection:

• Explicit Local Endpoint
• Either

– Remote host Interface Adapter address and Remote host
Connection Qualifier,

– Remote IP Address, Port and Protocol
• Private Data
• Timeout

g) If the timeout expired prior to connection establishment, uDAPL
indicates it to the Consumer as follows:

i) For the active side of the Connection Request, uDAPL gener-
ates an event to the connection event’s Event Dispatcher of
the Local Endpoint, requesting a connection that indicates that
the requested connection has not been established due to the
timeout expiration.

ii) (Nonrequirement) uDAPL is not required to notify the passive
side of the connection establishment at the time the timeout
expires.

iii) uDAPL keeps the pending Connection Request instance (pas-
sive side) for the requested connection valid until the Con-
sumer accepts or rejects the pending Connection Request,
the Consumer closes the Interface Adapter instance, or it fails.
 Page 36

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– (Nonrequirement) uDAPL is not required to notify the
Consumer on the passive side of the Connection Request
of the timeout expiration when the passive side Consumer
rejects the pending Connection Request, closes the
Interface Adapter, or fails.

– uDAPL notifies the passive side Consumer of the timeout
expiration when the Consumer accepts the pending
Connection Request. The accept operation for the
pending Connection Request returns success and
destroys the pending Connection Request. The Provider
generates a Connection Completion Error that indicates
that the connection establishment cannot be completed.

h) (Negative requirement) uDAPL ensures that a failure to establish
connection for any reason should have no effect on the posted
Data Transfer Operations.

i) uDAPL supports Private Data size of at least 64 bytes:

i) Providers can support a larger transport-agreed, specific Pri-
vate Data size:
– Transport-specific private data size is documented by the

Provider and must be specified in the Interface Adapter
Private Data Size parameter.

– All Providers for that Transport are required to support
private data size of at least the Interface Adapter Private
Data Size parameter.

j) (Nonrequirement) uDAPL is not required to provide support for
binding Local Endpoint to a specific Interface Adapter port.

k) uDAPL provides the API for the passive-side Consumer:

i) uDAPL provides the API for the passive-side Consumer to lis-
ten on a Connection Qualifier with a Backlog:
– uDAPL maps the backlog to the size of an Event

Dispatcher queue.
ii) (Nonrequirement) uDAPL is not required to provide support

for multiple listeners outstanding on the same Connection
Qualifier:
– uDAPL returns an error when the Consumer tries to

create a Service Point on a Connection Qualifier that is in
use by kDAPL, uDAPL, or any other interface or protocol
for the Interface Adapter.

iii) uDAPL provides support for consolidating Connection Re-
quest arrival notifications arrived on multiple Connection
Qualifiers of an Interface Adapter into a single Event Dis-
patcher queue.
 Page 37

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
iv) uDAPL enforces that DAT Consumers can only get a Connec-
tion Request arrival notification from an Event Dispatcher.

v) uDAPL enforces that the Consumer gets, at most, one Con-
nection Request arrival notification per Connection Request
arrival.
– Connection Request arrival notification is delivered to, at

most, one Event Dispatcher.
– There is, at most, one active CNO per Connection

Request arrival notification.
vi) DAT Endpoints can only be connected using DAT APIs.
vii) uDAPL provides the API for the passive-side Consumer to ac-

cept a Connection Request with explicit/implicit Endpoints
with Private Data.
– uDAPL provides a single operation for a Connection

Request accept, regardless of explicit or implicit
associated local Endpoints, and regardless of what type of
Service Point the Connection Requests are delivered on.

viii) uDAPL provides the API for the passive-side Consumer to re-
ject Connection Requests.
– (Nonrequirement) uDAPL is not required to provide

support for Private Data for Connection rejection.
– DAPL supports providing Consumer private data for

rejection for remote peer.
– DAPL does not provide any guarantee that reject

private data will reach remote peer.
ix) For iWARP transports that adhere to the MPA protocol the

Consumer acceptance or rejection of the Connection Request
is mapped into MPA reject frame.
– The rejection of the Connection Request is mapped into

MPA rejection bit.
– The MPA frame rejection bit can only be used for peer

reject.
l) Connection parameters

i) uDAPL Providers cannot change Endpoint and Connection at-
tributes during connection establishment.

ii) uDAPL provides default QoS class of service (best effort).
iii) uDAPL provides the capability for Consumers to specify the

transport-specific QoS.
iv) Active-side Connection Request calls have an attribute for

specifying a multipathing request, if it is supported.
 Page 38

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

m) The passive-side uDAPL Provider can support redirect without
any exposure of redirection in the uDAPL API or any participation
by DAT Consumers:

i) DAT Consumers are not involved in redirect of a Connection
Request.

ii) Active side has an alternative Connection Request call that
specifies remote side as the existing connection, which
means “duplicate this connection—connect to the same
host/IA.”
– The duplicate connection call also duplicates the

multipathing of the duplicating connection. Any fabric
failures should effect both connections the same way:
either both are up or both are down.

n) Connection Handoff

i) Passive-side uDAPL Provider shall support Connection Re-
quest handoff:
– uDAPL shall support connect request handoff between

uDAPL Consumers to other uDAPL Consumers using the
same uDAPL Provider on the same Interface Adapter on
the same node.

– A handoff specifies an alternate Connection Qualifier.
– uDAPL shall provide a mechanism for Consumers to hand

off Connect Requests by reposting these to the DAT
Provider in association with a new Connection Qualifier.

– The target Consumer (the Consumer to which the
connection is being handed) shall receive the Connect
Request on its Connection Qualifier as if it were received
directly from the originator (the active side).

o) (Nonrequirement) uDAPL is not required to provide support for
synchronous connection establishment.

i) If a uDAPL Consumer wants to block, it must block on the
designated connection Event Dispatcher or the CNO the
Event Dispatcher triggers.

7) uDAPL provides the API for Disconnect:

a) Passive and active sides can break a connection.

b) uDAPL supports abrupt Disconnect.

• Upon receiving a request for a Connection termination, the
uDAPL Provider breaks the connection and completes all
outstanding and in-progress DTOs with an error if they were
not previously completed successfully before notifying the
DAT Consumer about breaking the Connection.

c) uDAPL supports (fenced) Graceful Disconnect:
 Page 39

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
• Upon receiving a request for a graceful Connection
termination, the uDAPL Provider does not accept any new—
and completes all outstanding and in-progress—Send, RDMA
Read and Write DTOs, and RMR Binds before starting the
Disconnect and notifying the DAT Consumer about breaking
the Connection.

8) uDAPL supports the following Connection events:

a) Connection Establishment Completion event to indicate Connec-
tion establishment completion (both active and passive sides):

• Passive-side Private Data of the Connection acceptance is
passed to the Consumer in the Connection Establishment
Completion event.

b) Connection Request Arrival Notification event to indicate the Con-
nection Request arrival for the passive side:

• Active-side Private Data of the Connection Request is passed
to the Consumer in the Connection Request Arrival
Notification event.

c) Peer Connection Rejection Arrival Notification event to indicate
the connection rejection for the active side.

d) Non-Peer Connection Rejection Arrival Notification event to indi-
cate the non-peer Connection rejection for the active side. This in-
cludes all reasons for not establishing the Connection, except
timeout and peer reject. For example, remote host is not reach-
able, remote Consumer is not listening on the requested Connec-
tion Qualifier, Backlog of the requested Service Point is full, and
Transport errors.

e) Connection Completion Error Notification event to indicate the in-
ability to complete the Connection establishment for the passive
side. This notification is returned in response to the passive Con-
sumer accepting the Connection Request. Examples of the cause
of this error are Transport errors and timeout expiration on the ac-
tive side.

f) Disconnect Completion Notification event to indicate that a Con-
nection is broken by a Disconnect Request for both the requested
side and target side.

g) Broken Connection event to indicate that a connection is broken
and it is not due to the Consumer Disconnect on either side of the
connection.

h) Timeout Expired event to indicate that the timeout for the Connec-
tion Request expired before Connection establishment. This
event is only possible on the active side of the connection estab-
slishment.
 Page 40

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

i) Remote host Unreachable event to indicate that Provider cannot
reach remote host or that remote host does not respond to Con-
nection Request.

9) DAPL supports the following Reliability model:

a) All DTOs submitted to the DAPL Provider are completed suc-
cessfully in the absence of errors, with data delivered uncorrupt-
ed, in the order defined by the ordering rules.

b) Corruption of the data delivered to the DAT Consumer is detected
as an error and reported to the Consumer.

c) Data loss (inability to deliver data to the remote Endpoint of the
Connection, or to the local Endpoint for RDMA Read) is detected
as an error and reported to the Consumer.

d) Upon detection of an error, the Connection is broken and all out-
standing and in-progress DTOs are completed with an error.

e) There is a one-to-one correspondence between send DTOs on
one Endpoint of the Connection and Recv DTOs on the other
Endpoint of the Connection.

f) There is no correspondence between RDMA DTOs on one End-
point of the Connection and Recv or Send DTOs on the other
Endpoint of the Connection.

g) DTO Completion means that the Consumer can reclaim local re-
sources associated with the DTO, including a local buffer that
was specified for the DTO.

h) Delivery Ordering Rules:

i) The data payload for the send DTO matching a receive DTO
is delivered into the receive-indicated buffer memory prior to
the receive DTO completion.

ii) Receive DTOs on a connection are completed in the order of
posting of their corresponding sends.

iii) Each RDMA write DTO posted on a connection prior to a
send DTO posted to the same connection has its data pay-
load delivered to the memory specified by RMR Context and
RMR Target Address of the RDMA Write DTO prior to the
completion of the Receive DTO matching that send.

i) Completion Ordering Rules:

i) The data payload of a DTO is delivered into the receive- or
RDMA-indicated buffer prior to the DTO completion.

ii) All Send and RDMA Write DTOs posted to a connection are
completed in the order posted.

iii) RDMA Read DTOs posted to a connection are completed in
the order posted.
 Page 41

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
iv) RDMA Read DTOs can be completed out of order with re-
spect to Send and RDMA Write DTOs posted to the same
connection.

v) All Recv DTOs posted to a connection are completed in the
order posted.

vi) No order relationship between completions of Recv DTOs and
all other DTOs on the same connection.

vii) All Send, RDMA Read and RDMA Write DTO completions on
a connection generate DTO completion Events into the same
“Event Stream.”

viii) All Recv DTO completions on a connection generate DTO
completion Events into the same “Event Stream.”

j) DTO Processing Rules:

i) All Send, RDMA Read, and RDMA Write DTOs posted to a
connection start being processed in the order posted.

ii) All Recv DTOs posted to a connection start being processed
in the order posted.

iii) There can be multiple outstanding DTOs of the same or differ-
ent type on the same connection.

iv) If the Fence is specified for a Send, RDMA Read, or RDMA
Write DTO, that DTO (and all following DTOs) cannot start be-
ing processed until all previously posted RDMA Read opera-
tions are completed.

5.3 DATA TRANSFER OPERATIONS INITIATION

uDAPL provides the API for DTO initiation with the following
characteristics:

1) uDAPL supports the following Buffer Representations for DTOs:

a) The Local Buffer is represented by a Consumer IOV (I/O Vector)
with each element being a data segment represented by an LMR_
triplet:

• LMR Context
• LMR Virtual Address
• Length

b) uDAPL traverses the Local Buffer in the following logical order:

i) Data segments are in the order defined by IOV.
ii) Each data segment is traversed from the start of the segment

in linear order.
iii) There is, at most, one data segment (A) of the Local Buffer

whose data is partially transferred/filled.
 Page 42

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

iv) Data of all data segments preceding A in the IOV order are
fully transferred/filled.

v) (Nonrequirement) uDAPL is not required to touch any of the
data segments following A in the IOV order.

vi) The order data transfer in/out of a memory buffer is not speci-
fied:
– Transfer of all DTO data is finalized prior to DTO

completion.
c) IOV in a posted DTO is under uDAPL Provider control; Consum-

ers cannot modify its content or the memory it refers to until they
get control of it back:

i) The Provider must return control of IOV to the Consumer
when the DTO it is specified for is completed.

ii) The Provider can return control of IOV to the Consumer at the
return of the post DTO:
– The Provider documents and indicates through the

Provider Attributes its support for this behavior.
d) Remote Buffer is represented by a single RMR_triplet:

• RMR Context
• RMR Target Address
• Length

e) The result of the RDMA DTO accessing remote memory that is
being accessed by its local Consumer is not defined and the con-
tent of any remote memory accessed by the RDMA DTO is also
undefined:

i) Coherency between operations on local memory and RDMA
DTO operations on the same memory is defined by the local
host system architecture.

f) uDAPL supports byte alignment for local and remote DTO buff-
ers:

i) In any case, uDAPL Providers shall document a hint about
what the optimal alignment is for DTO buffers for system per-
formance per platform.
– (Advice) uDAPL Providers are advised to keep the

“optimal alignment hint” as close to the byte alignment as
possible and are recommended to have it smaller than the
uDAPL-1.0-defined “optimal alignment hint” constant.

– Providers shall provide the “optimal alignment hint” as an
attribute of Provider.
 Page 43

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
– (Advice) uDAPL Consumers are advised to keep DTO
buffers aligned to the “optimal alignment hint” constant
boundary for the portable performance characteristics
across multiple Providers.

– For uDAPL-1.0, the “optimal alignment hint” constant is
256 bytes.

g) (Nonrequirement) uDAPL does not define explicit Scatter/Gather
List DTO Objects, and uDAPL Providers are not required to sup-
port SGL Objects.

h) DAPL shall expose maximum IOV segments for local buffers for
Send/Recv, RDMA Read, and RDMA Write as separate IA at-
tributes.

i) (Nonrequirement) uDAPL is not required to support passing pa-
rameters for DTO initiation and DTO completion in any way other
than in-line.

j) uDAPL allows data segments to overlap on the “send” side of a
DTO.

k) Behavior for overlapping data segments for the “recv” side of a
DTO is undefined.

l) For send, recv, and RDMA initiator/local side DTOs, uDAPL sup-
ports more than a single data segment (number of IOV elements).

m) (Nonrequirement) uDAPL does not define the API for canceling
posted DTOs, and uDAPL Providers are not required to support it.

n) DAPL shall support an RDMA Read specifying a local data sink
using an RMR Context rather than an LMR Context.

i) DAT shall define a Provider attribute to indicate when use of
the RMR Context as the sink of an RDMA Read is required to
prevent exposing the RMR Context of the LMR Context to the
wire.

ii) DAPL shall support an RDMA Read specifying a local data
sink using a single RMR Context.

iii) (Nonrequirement) DAPL does not define the API for RDMA
Read specifying a local data sink as a collection of an RMR
Contexts.

2) uDAPL supports send DTOs.

3) uDAPL supports receive DTOs.

4) uDAPL supports RDMA Read DTOs.

5) DAT Provider shall support RDMA Read flow control.
 Page 44

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

a) The number of RDMA Read in progress simultaneously over a
connection shall not exceed Consumer-requested EP attribute
value.

6) uDAPL supports RDMA Write DTOs.

7) Multiple RDMA operations can be in progress simultaneously even
over the same connection:

a) The result of multiple RDMA DTOs accessing the same remote
memory simultaneously is not defined.

8) DAPL should support Shared Receive Queues

a) (Negative requirement) If IA does not support SRQ then DAPL
Provider should not emulate it.

i) SRQ support is intended to reflect support from the underly-
ing HCA/RNIC.

b) DAPL Provider shall document and report through Provider at-
tribute if it supports SRQ.

i) (Negative Requirement) All specific SRQ features are also
optional to implement. DAPL does not require an “all or noth-
ing” implementation of SRQ features.

ii) DAPL Provider shall document and report through Provider
attributes all the SRQ options it supports.

c) An SRQ buffer can be dequeued by any Endpoints that uses
SRQ. DAPL does not provide any guarantee on the order of SRQ
Recv buffer de-allocation by Endpoints

i) All buffers in SRQ should have the same IOV size and buffer
length.
– (Nonrequirement) DAPL Provider is not required to check

that all posted Recv buffers have the same IOV size and
length.

ii) (Nonrequirement) DAPL provides no API to allow an Endpoint
to seek an optimally sized buffer based on a size of the actual
received message.

d) DAPL shall provide a method to create an EP associated with an
SRQ.

e) (Nonrequirement) DAT does not provide any method to disasso-
ciate an EP from an SRQ.

i) EP destruction disassociates EP from SRQ.
ii) DAPL shall not allow an SRQ to be destroyed while it is still

referenced by an EP.
 Page 45

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
– The implicit destruction due to abrupt dat_ia_close, for
example implicitly for process termination, will destroy an
SRQ and all its associated Endpoints.

f) DAPL shall provide a method allowing Consumers to post Recv
buffers directly to the SRQ rather than to the EP, when the EP
was created with an SRQ.

i) (Negative Requirement) DAPL shall not allow a Recv buffer to
be posted to an EP that is associated with a SRQ.

g) DAPL shall provide a method for the Consumer to receive notifi-
cation when the number of available buffers on an SRQ falls be-
low a Consumer-specified “low watermark” threshold.

i) DAPL Provider support of “low watermark” threshold is option-
al.

ii) (Negative Requirement) DAPL shall not define any method for
permanently enabling a low watermark threshold in order to
prevent the Consumer from being swamped with low water-
mark events.
– Each “low watermark” threshold arming shall generate at

most one asynchronous (warning) event on IA
asynchronous EVD.

– DAPL shall provide the Consumer an explicit method for
arming the “low watermark” threshold.

h) DAPL shall define a method for the Consumer to guard against
any single Endpoint holding too many uncompleted Recv buffers.

i) Without such a guard a remote peer could drain the Shared
Receive Queue of available buffers, potentially causing an er-
ror on other Endpoints associated with the same SRQ.

ii) DAT shall provide a “soft high watermark” for local interfaces
that support generating an asynchronous warning event to the
Consumer when an Endpoint's span of allocated buffers ex-
ceeds the Consumer-specified threshold. If supported, detect-
ed violations will be reported as asynchronous events to the
asynch_evd for the Consumer to act upon.

iii) DAPL Provider support of “soft high watermark” threshold is
optional.

iv) (Negative Requirement) DAPL shall not define any method for
permanently enabling a low watermark threshold in order to
prevent the Consumer from being swamped with soft high wa-
termark events.
– Each “soft high watermark” threshold arming shall

generate at most one asynchronous (warning) event on IA
asynchronous EVD.
 Page 46

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– DAPL shall provide the Consumer an explicit method for
arming the soft high watermark threshold.

i) DAT shall support “hard high watermark” that supports automatic
termination of a connection that exceed the Consumer- specified
threshold.

i) DAPL Provider support of “hard high watermark” threshold is
optional.

j) (Nonrequirement) DAPL does not define an algorithm that is re-
quired to be used by Provider to allocate buffers from a SRQ
when messages are received out-of-order.

k) DAPL shall provide a method that allows the Consumer to query
the number of buffers allocated for each Endpoint, and the span
of message numbers that those buffers would represent if the
messages are to be numbered sequentially by the sender.

i) The support for query is optional.
l) All buffers in SRQ must have the same Protection Zone.

m) DAPL shall support “split PZ” mode operation with SRQs so the
SRQ associated Endpoints can have different PZs, while using a
common PZ for the buffers to be placed in the SRQ.

i) DAPL shall allow different RMRs to be valid on SRQ associat-
ed Endpoint

ii) In order to use “split PZ” Consumers must use a different
LMR to Send, RDMA Write that matches the EP than to Re-
ceive that must match the SRQ.

iii) The “split PZ” support is optional.
n) (Nonrequirement) DAPL does not define a method of discharging

buffers from an SRQ other than transferring them to an Endpoint
upon message arrival or deleting the entire SRQ.

o) DAPL shall provide a method for the Consumer to request resiz-
ing of a SRQ.

i) The Provider must ensure that SRQ resizing do not result in
the loss of any buffers currently assigned to the SRQ.

p) The default attributes of all DAT objects effected by SRQ func-
tionality is identical to SRQ support not being present. This en-
sure backwards compatibility to pre-DAPL-1.2 Consumers.

q) DAPL shall support return of SRQ specific attributes of EP for
dat_ep_query when EP is associated with SRQ.

9) uDAPL provides Consumer support for specifying a “cookie” per DTO
initiation.
 Page 47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
10) Prior to Connection establishment, uDAPL only allows Receive oper-
ations to be posted to a local Endpoint:

a) uDAPL does not allow send, RDMA Read, or RDMA Write opera-
tions to be posted to a local Endpoint prior to Connection estab-
lishment.

11) (Nonrequirement) uDAPL does not define the API for Atomic opera-
tions and uDAPL Providers are not required to support it.

12) uDAPL supports Notification Suppression for completion event of
DTOs, RMR and LMR asynchronous registration and invalidation.

13) uDAPL-1.1 and above supports per Endpoint for Receive Comple-
tions:

a) Locally controlled Notification Suppression.

b) Remotely controlled notification suppression via matching Send
Solicited Wait.

c) (Nonrequirement) Provider is not required to support both a) and
b) simultaneously.

14) uDAPL can support Solicited Wait:

a) A uDAPL Provider that does not support Solicited Wait natively in
the Transport does not emulate it:

i) A uDAPL Provider documents and reports though Interface
Adapter Provider attributes if it supports Solicited Wait.

15) uDAPL supports Completion Suppression.

a) The Consumer is required to provide a “cookie” even for DTOs
with Completion Suppression.

16) uDAPL supports Barrier Fence.

17) uDAPL supports uDAPL Consumer-provided “cookies” per DTO initi-
ation:

a) The Consumer “cookie” is opaque to the Provider:

i) uDAPL does not rely on the uniqueness of the Consumer pro-
vided “cookie” per DTO.

b) uDAPL supports a single type definition for Consumer “cookies”
that can support the following:

i) Index/integer
ii) uDAPL Consumer handle
iii) Pointer
iv) 64 bits
 Page 48

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

5.4 DATA TRANSFER OPERATION COMPLETIONS

1) uDAPL provides support for consolidating DTO Completion notifica-
tions for DTO invocations submitted to multiple RQs of the same or
different connected Endpoints into a single queue (Event Dispatcher
Queue).

2) uDAPL generates a Completion event per posted DTO:

a) uDAPL provides the API for the Consumer to indicate that a Pro-
vider does not generate the successful Completion notification for
the posted DTO (suppressing DTO Completion notification).

3) uDAPL enforces that the uDAPL Consumer gets, at most, one Com-
pletion notification for a DTO:

a) DTO Completion notification is delivered to, at most, one Event
Dispatcher.

b) There is, at most, one active CNO for the Completion notification
of a DTO.

4) uDAPL enforces that uDAPL Consumers can only get DTO Com-
pletion notifications from Event Dispatchers.

5) uDAPL returns in the DTO Completion event the Consumer “cookie”
specified by the Consumer at the DTO initiation.

6) uDAPL shall provide support for consolidation of completeness
across multiple DAT Providers only through the use of OS Wait Proxy
Agent representing a shared OS-specific synchronization mech-
anism.

7) uDAPL should enforce that there is, at most, one CNO active per
Completion event. Providers are encouraged to mask false wake-
ups.

8) DAPL-2.0 and above shall provide in Completion Event for DTO the
operation type of completed DTO.

5.5 MEMORY MANAGEMENT

uDAPL provides the API for Memory Management with the following
semantic characteristics:

1) All memory registrations are per Interface Adapter.

2) The uDAPL Consumer must ensure that all its Interface Adapter reg-
istered memory is accessible by the Interface Adapter it opened.

3) All uDAPL Objects’ memory is owned by the uDAPL Provider:

a) Opaque handles for all uDAPL Objects: RMR, LMR, IA, Endpoint,
Service Point, Protection Zone, Event Dispatcher.

b) Event streams memory owned by the Provider.
 Page 49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
c) All queues (or their simulations for Consumers) are owned by the
Provider and are opaque to Consumers. Consumers cannot reor-
der or delete entries or even see the queues (with their ordering)
at all:

i) (Nonrequirement) Actual queues are not required for uDAPL
Providers.

ii) Consumers can post entries to some queue types through
methods on an Object that encompass the queue:
– The Consumer can post Software events to an Event

Dispatcher.
– The Consumer can post DTOs to an Endpoint:

– The Consumer can post send, RDMA Read, and
RDMA Write DTOs to a connected Endpoint only.

iii) Consumers can take entries from some queue types through
methods on an Object that encompass the queue:
– The Consumer can dequeue events from an Event

Dispatcher.
iv) uDAPL provides support for resizing the Event Dispatcher

queue:
– (Nonrequirement) uDAPL is not required to provide any

visibility for Consumers into new allocated resources or
extended current ones for the resized queue.

– uDAPL preserves the content of the resized queue.
4) uDAPL provides the API for the following Memory Registration:

a) LMR for local access by the uDAPL Provider:

i) uDAPL provides support for enabling and disabling per LMR
instance:
– Local Read access
– Local Write access

ii) uDAPL provides support for memory protection specification
per LMR instance - Protection Zone attribute.

iii) (Negative Requirement) uDAPL shall not support any mecha-
nism for a Consumer to register memory that it does not al-
ready have validly mapped under the host OS and DAT
memory privileges.

iv) DAPL supports Consumer ability to use as virtual address for
the registered LMR either:

– process Virtual Addresses
– memory region 0-bazed addresses
 Page 50

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

v) uDAPL supports the Consumer capability to create multiple
LMRs referencing the same memory:
– The same virtual addresses
– Registered by another LMR

vi) uDAPL shall enable the Consumer to register memory shared
with other uDAPL Consumers of the same uDAPL Provider.
The Provider should avoid duplication of hardware resources
when registering memory shared by multiple uDAPL Con-
sumers.
– uDAPL Consumer shall open the same Provider library of

the Interface Adapter that is identified by the common IA_
Name.

– (Negative Requirement) uDAPL is not required to support
different Consumers reporting varying sizes for the same
shared region.

– The shared region shall be identifiable by a unique
Consumer cookie.

– uDAPL Consumers that share a memory region should
register that memory on the host using platform-specific
methods outside the DAT.
– uDAPL Provider can rely on the uDAPL Consumer

registering the shared memory region on the host so
the Provider can register the physical memory for that
region with an Interface Adapter once for all DAT
Consumers sharing the region.

– The shared memory region can have different
Protection Zones and different DAT Consumers.

– uDAPL shall support multiple Consumers identifying the
same shared region by the unique cookie, with identical
sizes, without requiring the Consumers to apriori
designate which one is actually the first to register the
region (peer-to-peer shared memory model).

– (Nonrequirement) Different uDAPL Consumers are not
required to have the same virtual address for the shared
region.

– uDAPL Providers can use shared objects to fulfill shared
memory requirements.

– uDAPL Providers can clone the original LMR.
– Sharable LMRs shall not be modifiable even if non-

shared LMRs are modifiable.
vii) DAPL supports platforms with non-coherent memory in areas

between
– cpu cache and memory
 Page 51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
– I/O controller cache and memory
viii) DAPL shall enable the Consumer to preserve a consistent

view of memory content on platforms with non-coherent mem-
ory.
– DAPL Providers shall inform Consumers through Provider

attribute values that synchronization is required for RDMA
Read and Write.

– if proper synchronization step is not performed by the
Consumer, data coherency becomes undefined.

– I/O controller cache and memory
ix) DAPL shall support remote invalidation of LMR and RMR

– Invalidation requires that the remotely invalidated LMR
or RMR can not be used for remote RDMA operations

– (Non-Requirement) Remote invalidation does not
require that the underlying memory of LMR or RMR is
no longer mapped or pinned by the Provider

b) Remote Memory Region (RMR) within an LMR for the RDMA op-
erations:

i) uDAPL provides support for enabling and disabling per RMR
instance:
– RDMA Read
– RDMA Write

ii) DAPL enables Consumers to scope memory protection speci-
fication for RMRs with one of the following:
– Protection zone based
– Endpoint based

iii) DAPL Provider must support at least one type of RMR protec-
tion:
– Protection zone based
– Endpoint based

iv) DAPL Provider must specify via Provider attribute which of
RMR protection scope types it supports.

v) uDAPL provides (lightweight) operation for binding RMR with-
in its associated LMR Context:
– Bind of RMR can change RMR’s memory region within the

LMR context.
– Bind of RMR creates an RMR Context.
– Bind of RMR makes previous RMR Contexts of the RMR

invalid.
– Binding of RMR is an asynchronous operation.
 Page 52

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– Completion notification of an RMR Bind is reported as
an event of an Event Dispatcher of an Endpoint to
which RMR Bind is posted to.

– A new RMR Context is returned synchronously and
makes previous RMR Contexts invalid.

– A failure of the asynchronous part of the RMR Bind
breaks the connection of the Endpoint it was posted
to.

– RMR Bind is a barrier operation for the Endpoint
Connection. uDAPL does not start any of the Send,
RDMA Read, RDMA Write, or RMR Bind operations
posted to the Endpoint after the RMR Bind until it is
completed successfully.

– The Consumer does not provide new RMR Context
until RMR Bind is completed. The Consumer can use
barrier behavior of the RMR Bind and post a DTO to
transfer new RMR Context to a remote Consumer to
the Endpoint to which RMR Bind posted to.

– Consumer should not post an RMR bind of the same
RMR until the previous one completes.

– RMR Bind must be lightweight:
– Less overhead than memory registration for RMR

(RMR creation).
– Is suitable for per RDMA DTO basis use.

vi) uDAPL provides RMR Context for binded RMR that is suit-
able for sharing with a remote Consumer:
– uDAPL only allows RDMA operations to succeed if the

local Endpoint of the connection of the RDMA operation
and RMR of a valid RMR Context used for specification of
RDMA DTO buffer have an identical Protection Zone
attribute.

– uDAPL enforces that RMR Context is valid until the
associated RMR has been rebound or destroyed.

– uDAPL supports the use of the same RMR Context for
RDMA operations on multiple connections.

– A Connection is capable of supporting RDMAs with
multiple RMR Contexts whose associated RMRs share
the same Protection Zone.

vii) (Nonrequirement) uDAPL can support the uDAPL Consumer
capability to create multiple RMRs referencing the same
LMR.

c) (Negative requirement) uDAPL should not allow the following:
 Page 53

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
i) Interface Adapter to access memory outside the Consumer-
registered one (remote Consumer to read or write into local
Consumer memory on the physical pages portions of which
have been registered by the Interface Adapter).

ii) Consumer access to Interface Adapter pages outside the por-
tion of the pages registered for that Consumer.

5) DAT Provider shall expose RDMA Transport requirement for RDMA
Write memory privilege for RDMA Read accessible memory.

5.6 ERROR DETECTION AND NOTIFICATION

uDAPL provides Error Detection and Error Notification.

1) uDAPL provides an Event Dispatcher for Asynchronous Error Notifi-
cation associated with an Interface Adapter.

2) If a catastrophic error is reported through an Asynchronous Error
Event Dispatcher, the behavior of the Interface Adapter after that is
not defined:

a) uDAPL is required to support closure of the Interface Adapter
even in the presence of a catastrophic error.

5.7 EVENT MODEL

uDAPL provides the API for the following Notification Model:

1) Ability to consolidate all notifications into a single queue (ordered
event queue - virtual):

a) An Event Dispatcher Object that provides consolidation of DAT
Notification events into a single ordered queue.

b) Support for multiple Consumer-created Event Dispatchers for the
same Interface Adapter that can all work in parallel.

c) uDAPL supports the Consumer capability to specify the minimum
length of the Event Dispatcher event queue.

i) uDAPL supports the Consumer capability to resize the Event
Dispatcher queue:
– (Nonrequirement) uDAPL is not required to support the

Consumer capability to shrink the Event Dispatcher queue
such that existing events in it have to be dropped.

d) The order of events of an individual Event Stream is preserved by
Event Dispatcher.

e) (Nonrequirement) uDAPL is not required to provide any ordering
of events among multiple Event Streams of a single Event Dis-
patcher except the Event Streams corresponding to a single con-
nection, as specified:
 Page 54

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

i) A Connection Establishment event precedes any DTO Com-
pletion events.

ii) All DTO Completion events that, for successful completions,
should precede the Disconnect event.

iii) No order between DTO Completion events that are complet-
ed with an error and the Disconnect event.

f) To the extent that it is possible for the uDAPL Provider to effi-
ciently determine the true time ordering of events on different
Event Streams, it should preserve that order when dispatching
events.

2) If the queue of an Event Dispatcher is full then DAPL shall generate
an Event Dispatcher overflow error that is delivered to the Asyn-
chronous Error EVD of the Interface Adapter

a) DAPL is allowed to report a single overflow error for multiple over-
flows of the same Event Dispatcher (sticky overflow error).

b) If the queue of the Asynchronous Error EVD of the Interface
Adapter is full then the last reported error shall be Event Dis-
patcher overflow catastrophic error of itself.

3) Sticky CNO–persistent CNO

a) At most, one CNO can be registered per Event Dispatcher.

b) uDAPL shall allow Consumer to specify zero or one OS Wait
Proxy Agent per CNO.

c) A CNO delivers a notice that an Event Dispatcher that feeds it
has had a Notification Event, and the identity of one Event Dis-
patcher for which that is true.

i) (Negative requirement) A CNO does not have to identify all its
feeding Event Dispatchers that had Notification Events.

ii) A CNO can consolidate multiple notifications that occur faster
than it can unblock a waiter into a single notification.

iii) (Negative requirement) The CNO does not deliver events.
Consumers must dequeue the events from the Event Dis-
patcher themselves.

iv) When there are multiple waiters on a CNO, at least one is
awakened by a notification. uDAPL Provider has the freedom
to choose a waiter for notification delivery.

v) There can be a short, nondeterministic time from reception of
a notification and unblocking of a waiter. During this time, oth-
er notifications can be consolidated. During this time, a fresh
call to dat_cno_wait can consume the notification.

d) The same CNO can be registered for multiple Event Dispatchers
of the same Interface Adapter.
 Page 55

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
e) The CNO remains bound to an Event Dispatcher until it is explicit-
ly unbound, by replacing it with another CNO or by setting CNO to
NULL.

f) (Negative requirement) Association between a CNO and an Event
Dispatcher is persistent and CNO does not have to be reregis-
tered during each dispatch by the Consumer.

g) uDAPL shall provide a Consumer with an ability to get the next
event from the Event Dispatcher queue.

4) All transport-specific interactions with the Event Stream for the event
triggered CNO shall be completed prior to signaling the CNO or prior
to the event being placed on the Event Dispatcher queue.

5) The scope of the Event Dispatcher is a single Interface Adapter:

a) The same CNO can be registered with multiple Event Dispatchers
of the same Interface Adapter.

b) CNOs of different Interface Adapters can unblock a common OS
Wait Proxy Agent.

c) uDAPL shall support associating the same OS Wait Proxy Agent
with CNOs of the same or different Interface Adapters.

6) The Event Dispatcher cannot be destroyed or freed when it has Event
Streams associated with it:

a) Event Dispatchers of an Interface Adapter are destroyed when
the Interface Adapter is closed.

b) The uDAPL Consumer is not required to drain the Event Dis-
patcher queue prior to a destruction of the Event Dispatcher.

7) uDAPL supports the capability of the uDAPL Consumer to generate
software notification events (Software events):

a) uDAPL does not allow the Consumer to generate or mask uDAPL
events/errors/notifications:

• The Provider Library can support a capability to mask
Software events as uDAPL events for the debugging library:
– If the Provider Library supports masking of Software

events as uDAPL events, it defines a separate method on
Event Dispatcher with a different prefix than defined for
uDAPL or uDAPL operations.

b) (Nonrequirement) There is no ordering between Consumer-gen-
erated Software events posted to an Event Dispatcher and other
events of the Event Dispatcher.

c) Software events form an independent Event Stream.

d) Software events are notification events.
 Page 56

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

e) Posting of a Software event cannot cause the Event Dispatcher
queue overflow

i) An attempt to post a Software event that causes an overflow
is reported to a Consumer synchronously and the Software
event is not being posted to the Event Dispatcher.

ii) An attempt to post a Software event that causes an overflow
for an Event Dispatcher does not generate the EVD overflow
error and hence, is not reported on the Asynchronous Error
Event Dispatcher.

8) uDAPL supports Threshold parameter for EVD waiters.

a) (Nonrequirement) Provider is not required to support Threshold
and Notification Suppression for the same EVD simultaneously.

9) All non DTOs, RMR and LMR asynchronous registration and invali-
dation completion events are notification events.

a) Whether or not DTOs, RMR and LMR asynchronous registration
and invalidation completion events are notification events or not
is controlled by posted operation completion flags or for Recv op-
eration Solicited Wait flag of matching Send operation.

10) DAPL supports the capability Extended Object to generate events
(Extension events):

a) DAPL Extension can provide an ability to generate either notifica-
tion or non-notification events

b) DAPL Extension define ordering between Extension events post-
ed to an Event Dispatcher and other events of the Event Dis-
patcher.

i) DAT Provider attribute defines whether or not Provider sup-
ports merging Extended event stream with other event
streams on an Event Dispatcher.

c) Extended events form an independent Event Stream.

d) Extension event data is passed as pointer to a buffer

i) Buffer must be accessible from the Consumer space
ii) Provider shall ensure that the buffer is accessible from Con-

sumer space.
e) Posting of an Extended event may cause the Event Dispatcher

queue overflow

i) Provider shall define the overflow behavior of the extension
event stream.

5.8 NAME SERVICE

uDAPL relies on the following Name Service requirements:
 Page 57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
1) A name service exists that translates host names to IP addresses,
and vice versa.

2) DAT supports the IPv6 format.

a) DAT allows the use of encapsulation of IPv4, GIDs, or other 128-
bit transport addresses into IPv6.

3) The name must be consistent across all fabrics for local name reso-
lution.

4) There is no other transport dependency or local Interface Adapter de-
pendency.

a) There is no requirement for IPoverIB.

5) Any nonlocal IP name must be reserved.

a) Global IP name space must be respected.

6) DAT does not require any new name service mechanism on a
platform.

a) Consumer can use any existing host-provided name-service
mechanisms and APIs that provide IPv6 resolution.

7) The naming assignment must be consistent. All name-resolution APIs
must resolve the name and address information consistently on the
platform for a given host.

5.9 HIGH AVAILABILITY (HA)
1) DAPL optionally supports High Availability

2) DAPL optionally supports two connection models

a) single path model

b) multipaths model

i) (non requirement) DAPL does not require to expose 2 path or
any specific number of paths connection model

3) DAPL optionally supports Active-Passive model of multipathing

4) DAPL Provider can provide load balancing to balance active path as-
sigment for multiple connections that share the same underlying
paths

a) DAPL Provider attribute specifies whether or not load-balancing is
supported

5) (non Requirement) DAPL does not provide support for non-A/P mul-
tipathing model

6) (non Requirement) DAPL does not gurantee HA across heteroge-
neous IAs

7) DAPL supports 2 models of High Availability
 Page 58

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

a) Consumer level HA

i) DAPL provides support for Consumer doing multipathing at
the application level.
– DAPL does not impose any restriction to the HA model

Consumer want to do:
– Hot Standby
– Parallel Connections
– Cold Stanby
– New EP and connection creation upon a connection

failure
– disconnected EP is reconnected on failure

ii) DAPL Provider exposes individual HW as IA
– Each RDMA capable HW: HCA, RNIC
– Each port of RDMA capable HW
– DAPL provides an API for Consumer to find out whether 2

IAs are two ports of the same HCA, RNIC
– DAT Registry supports a query which reports whether

or not 2 IAs share resources.
iii) DAPL Provider hides all redirection for dat_ep_dup_connect

but guarantees that the new connection reaches the same
destination and Connection Qualifier as the duplicated one
got its connection request delivered
– (Non Requirement) DAPL Provider does not guarantee

load balancing between duplicated and new connection
– (Non Requirement) DAPL Provider does not required to

guarantee that original and duplicate connections share
the same path(s)

b) Provider delivered HA. DAPL defines the following Provider HA
models:

i) DAPL supports Service Persistent model
– IA_Address and Connection Qualifier are persistent

across failures. The remote IA_address can be virtualized
and represent different hosts, different IAs or different
ports of the IA.

ii) (non-Requirement) DAPL does not have to support RMR_
contexts persistency model

iii) (Non Requirement) DAPL does not have to support Session
Persistency
– DAPL 2.0 does not define the concept of the session
– All EPs of a session failover together
 Page 59

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
iv) DAPL supports EP level consistency
– DAPL Provider maintains a connection
– DAPL Provider reports active path migration to a

Consumer according to a) DAPL exposes the following
abstract events on page 61

v) DAPL supports Transport level consistency
– All failures are handled by the underlying transport

– For example, IB APM, IP SCTP provide path migration
for Transport level connection persistency

– Transport level consistency guarantee an EP connection
persistency but does not guarantee that the connection
IA_address and Connection Qualifier will be persistent
across faults

c) DAPL Provider HA model guaranties the following connection
(EP) persistency

i) EP state is maintain in the presense of a fault
– A failure which does not result in loss of physical

connection between local and remote hosts preserves the
state of the EPs on both ends of the connection across the
fault and potentially active path migration

– A failure of the last physical path connecting local and
remote hosts results in the connection failure and EP
transitioning into disconnected state

ii) Faults that do not result in path migration do not have any im-
pact on any existing DAT objects with exception that some
connections may transition from multipathed state to single
path state.

iii) Path migration, including transport level path migration, does
not impact posted, completed and in-progress DTOs

iv) Path migration guarantee that all LMRs, RMRs, LMR_con-
texts, RMR_context remain valid and operational.

v) DAPL Provider guarantees the ordering of DTO completions
and processing in the presence of path migration
– DAPL provider guarantees that all RDMA operation

complete remotely and are in remote Consumer memory
before Recv completion that matches the Send that
followed RDMA DTOs has been delivered to Remote
Consumer.

d) DAPL Provider can provide any combination of the following mul-
tipathing and path migration policies:

– IP address multipathing. DAPL Provider provides multiple
routes between two endpoints of a connection
 Page 60

uDAPL Document User-Level API Requirements Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

– DAPL Provider guarantees that all created DAT
objects can still be used in the presence of faults.

– Inter-NIC migration. Migration between homogeneous
RNICs, HCAs.
– DAPL Provider guarantees that all created DAT

objects are inter-NIC scoped.
– Intra-NIC migration. Physical port migration between

different ports of the same RNIC, HCA.
– DAPL Provider guarantees that all created DAT

objects are intra-NIC and intra-port scoped.
– DAPL Provider attribute specifies which of the above 3

models are supported
– DAPL provides the same migration policy support for

all EPs
– (non Requirement) DAPL EP connect calls do not

support Consumer specification which of the
multipathing policy to use for the connection

8) Provider notifies Consumer about path migration while maintaning
the state of the EP as defined below in a) DAPL exposes the fol-
lowing abstract events on page 61

9) DAPL HA defines a new EVD stream that is associated with IA and is
used for delivery of HA events

a) DAPL exposes the following abstract events

i) connection is down to a single path
ii) connection now has more than one path
iii) Broken connection, connection is down to 0 paths, is NOT de-

livered to the HA event stream
b) broken connection event are delivered to the EP connect EVD

c) IA HA event stream is not associated with any EVD by default

d) Consumer can associate IA HA event stream with IA asynchro-
nous EVD using EVD_modify_event_streams

e) IA HA event stream can only be delivered to IA asynchronous
EVD.

f) DAPL does not deliver any remote HA event on local IA HA event
stream unless it also impacts the local side

i) DAPL Provider can optionally deliver any network cloud
events that impact existing physical paths of a connection
– The delivered event is per physical path and not per DAT

connection
 Page 61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPLDocument User-Level API Requirements Revision: April 20, 2006
VERSION 2.0
10) DAPL supports a Consumer ability to specify whether a requested
multipathing connection must have more than a single path or if it can
accept a connection in initially degraded mode of a single path.

a) DAPL EP connect calls mutlipathing argument shall support the
following 3 values:

i) no multipathing requested
ii) mutlipathing required. Do not create connection if only a sin-

gle path is available
iii) multipathing requested. Connection can be established in de-

graded mode.
– If connection is established in degraded mode an event

will be delivered to the HA event stream, if it had not been
delived before, indicating that only a single path is
available

11) DAPL support Consumer ability accept connection (dat_cr_accept)
with the same multipathing flags as EP connect calls

12) DAPL Provider supports Consumer ability to listen on all underlying
HW resources based on the HA model it provides.

13) (Negative requirement) DAPL does not provide Consumer ability for
Multipathing hint for SRQ.

14) DAPL Provider maintains the multipathing state of the connection:
single path, more than one path.

15) DAPL does not migrate a connection from one path to another for
multipathed connection if it is not transmission related.

a) The bad data faults (checksum) on one connection shall not
cause path migration for other connections

i) bad data will cause the multipathing connection failure
ii) DAPL Provider shall handle transfer level data faults (check-

sum causes data retransmission)
 Page 62

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 6: UDAPL-2.0 API

This chapter defines the user-level DAT API for uDAPL.

6.1 API CONVENTIONS

The DAT API conventions are as follows:

1. All OUT parameters are passed as pointers and hence have "*" in
front of the parameter.

2. All character string passing are of the type of char*, where * is not
part of the type but is in front of a parameter.

3. INOUT parameter is used by DAT as defined by C.
4. Integer masks are used for Query and Modify routines to request

specific parameters and attributes.
5. Handles are used for objects. The Handles are pointers.
6. IN parameters that are passed as pointers are explicitly marked

“const”.

The DAT API is a set of methods that apply to DAT Objects. These types
are as follows:

• DAT_IA: An open instance of an Interface Adapter (IA)
• DAT_PZ: A Protection Zone
• DAT_LMR: A Local Memory Region
• DAT_RMR: A Remote Memory Region
• DAT_EP: A Local Endpoint
• DAT_PSP: A Public Service Point
• DAT_RSP: A Reserved Service Point
• DAT_EVD: An Event Dispatcher
• DAT_CR: A Connection Request
• DAT_SRQ: A Shared Receive Queue
• DAT_CNO: A Consumer Notification Object
• DAT_CSP: A Common Service Point

6.1.1 NAMESPACE

For the ANSI C mapping of DAT, all global symbols defined by DAT at
compile or link time begin with “DAT_” or “dat_”. No other package on a
host can use these symbols.

Except as specifically noted, kDAPL and uDAPL have the same
namespace. The same types and methods are defined for almost all
 Page 63

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Consumer activities. Exceptions will be noted within this document. Where
both a uDAPL- and a kDAPL-specific method exist for a given operation,
the latter will be identified with a “k” prefix in the “verb” part of the name.
For example, the kDAPL-specific method for EVD creation is dat_evd_
kcreate, while the uDAPL-specific method is dat_evd_create.

6.1.2 MEMORY SPACE

All DAT Objects are allocated by the Provider from the Provider memory.
All DAT Objects are opaque to a Consumer. Except as noted, DAT Objects
are not transferable between Providers or Consumers. There are no
exceptions for uDAPL-1.0, uDAPL-1.1, uDAPL-1.2 and uDAPL-2.0.

All DAT Object handles are in the Consumer address space and are not
transferable between DAT Consumers even of the same Provider. The
only constructs that are transferable are RMR_CONTEXT and DAT_OS_
WAIT_PROXY_AGENT.

6.1.3 THREAD, SIGNAL AND EXCEPTION HANDLER SAFETY AND BLOCKING DEFINITIONS

6.1.3.1 THREAD SAFETY DEFINITIONS

“Thread safe” and “non-thread safe” are terms that apply unambiguously
to a library. A “thread safe” library is one that can have any number of
threads executing within it without regard to what functions those threads
call. A “non-thread safe” library is one in which the behavior of having
multiple threads of execution within it is undefined.

However, it is confusing to call a routine “thread safe” or “not-thread safe,”
because thread safety is implicitly about interactions between routines. If
there is a thread of execution within a routine called thread safe, and a
thread of execution within a routine called non-thread safe, what is the
result? The answer is not obvious because the definitions of “thread safe”
and “not-thread safe” with respect to routines has not been specified.

For the uDAPL library, the terms “thread safe” and “non-thread safe” are
defined with respect to routines as follows. Note that in what follows “can
be called” translates to “the results of calling this function are well-defined”
and “cannot be called” translates to “the results of calling this function are
not well defined”. The Provider does not enforce the thread safety
restrictions described in this document. If the Consumer violates them, the
behavior is not defined.

• A routine is "thread safe" if that routine
• Can be called without imposing any restrictions on routines

called by other threads in the system.
• Can be called without regard to what other routines currently

have threads of execution within them.
• A routine is "not-thread safe" if the routine cannot be called if any

other in-progress non-thread safe routine shares any of its primary
arguments. Almost all routines have a single primary argument which
 Page 64

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

is the first argument in its signature. The single exception is dat_rmr_
bind, which has as a primary argument both its first argument (dat_
rmr_handle) and the Endpoint (dat_ep_handle) on which it is called.

This definition explicitly allows simultaneous non-thread safe calls on
objects that are “linked” (for example, an EVD and the CNO that it
references), so long as no primary object is explicitly shared between the
routines.

A Provider is “thread safe” if all routines within the Provider marked as
having Provider-dependent thread safety are thread safe. A Provider is
“not-thread safe” if all routines within the Provider marked as having
Provider-dependent thread safety are not thread safe.

Note that uDAPL only allows these two types of Provider libraries: “thread
safe” and “non-thread safe.”

6.1.3.2 SIGNAL AND EXCEPTION HANDLER SAFETY DEFINITIONS

It is confusing to call a routine “Signal and Exception handler safe” or “not-
safe,” because Signal and Exception handler safety is implicitly about
interactions between routines. If there is a thread of execution within a
routine called Signal and Exception handler safe, and a thread of
execution within a routine called non-Signal and Exception handler safe,
what is the result? The answer is not obvious because the definitions of
“Signal and Exception handler safe” and “not-Signal and Exception
handler safe” with respect to routines has not been specified.

For the uDAPL library, the terms “Signal and Exception handler safe” and
“non-Signal and Exception handler safe” are defined with respect to
routines as follows. Note that in what follows “can be called” translates to
“the results of calling this function are well-defined” and “cannot be called”
translates to “the results of calling this function are not well defined”. The
Provider does not enforce the Signal and Exception handler safety
restrictions described in this document. If the Consumer violates them, the
behavior is not defined.

• A routine is "Signal and Exception handler safe" if that routine
• Can be called in Signal and Exception handler without imposing

any restrictions on routines called by other threads and handlers
in the system.

• Can be called without regard to what other routines currently
have threads of execution within them.

• A routine is "not-Signal and Exception handler safe" if the routine
cannot be called in a handler if any other in-progress non-Signal and
Exception handler safe routine shares any of its primary arguments.
Almost all routines have a single primary argument which is the first
argument in its signature. The single exception is dat_rmr_bind,
which has as a primary argument both its first argument (dat_rmr_
handle) and the Endpoint (dat_ep_handle) on which it is called.
 Page 65

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
This definition explicitly allows simultaneous non-Signal and Exception
handler safe calls on objects that are “linked” (for example, an EVD and
the CNO that it references), so long as no primary object is explicitly
shared between the routines.

6.1.3.3 DESIGN PRINCIPLES

• All functions must be thread Signal and Exception handler safe
unless it is explicitly noted otherwise.

• Some functions are explicitly noted as Provider-optional thread safe
because enforcing thread safety might significantly impact either
these function's performance or the performance of functions with
which they synchronize. These functions are either on a
performance-critical path, or might, in a reasonable implementation,
need to be synchronized with performance-critical path functions.

• Some functions are explicitly noted as Provider-optional Signal and
Exception handler safe. These include functions that are not
expected to be needed by Consumer to use in handler, like
connection management and query functions.

• All functions that require memory allocation and freeing are blocking.
All functions that Consumer expect to use in handlers are non-
blocking. The remaining functions are Provider-dependent.

• If Provider claims to be thread safe, then all functions, except object
destructors but including all above noted optional functions, must be
thread safe.

• If Provider claims to be Signal and Exception handler safe, then all
Provider-dependent functions are Signal and Exception handler safe.
Thus, also means that all these functions are non-blocking. For
uDAPL Provider Signal and Exception handler safety is subject to
caveats of Section 6.9, “Operating System Specific Notes,” on
page 303.

More detailed design principles are listed below, and object destruction is
discussed in the next section:

• Noncritical path routines should be thread safe for Consumer
convenience.

• Any query routine is presumed to provide a coherent snapshot of its
object, and making that snapshot coherent might require locking both
in the snapshot routine and in any routines that modify the object's
state. Therefore, it is inappropriate to make a query routine thread
Signal and Exception handler safe unless that routine is specifically
noted to not necessarily provide a coherent snapshot.
• dat_ep_get_status is explicitly described as not doing heroic

synchronization measures and hence (implicitly) not necessarily
returning a coherent state. Hence the logic of the above bullet
does not apply to it.
 Page 66

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• Because dat_evd_wait is defined as thread safe, it is always
acceptable to call dat_evd_post_se on an EVD that has a waiter on
it, even if dat_evd_post_se is non-thread safe.

• The connection related EVD calls can involve modifying the state
related to DTO posting (a critical path operation). Hence, making
those calls thread Signal and Exception handler safe might require
locking on the critical path.

• dat_rmr_bind is a critical path operation; it should not be thread safe.
• All Post operations must be Signal and Exception (subject to

caveats of Section 6.9, “Operating System Specific Notes,” on
page 303) handler safe. Even if DTO and RMR post routines are not
thread safe, threads can be present in both the Request and Recv
queues of an Endpoint simultaneously. Note that this does not allow
multiple threads posting to the Request queue, or multiple threads
posting to the Recv queue of an Endpoint. dat_rmr_bind is a
Request queue post operation.
• More precisely, in a non-thread safe Provider, there is an

exception to the general thread safety restrictions: there can be
one thread executing in one of the routines dat_ep_post_send,
dat_ep_post_send_with_invalidate, dat_ep_post_rdma_write,
dat_ep_post_rdma_read, dat_ep_post_rdma_read_to_rmr, or
dat_rmr_bind at the same time as another thread is executing in
dat_ep_post_recv. No more than one thread can execute in
either of these classes.

• dat_rmr_bind is special from a thread safety point of view. If this
routine is non-thread safe, then it cannot be called
simultaneously with any non-thread safe routines operating on
the Endpoint as their primary argument. This restriction is in
addition to the standard non-thread safety restriction prohibiting
multiple calls with the RMR as the primary object (first
argument). This restriction has the exception described in the
above bullet; dat_rmr_bind can be called simultaneously with
dat_ep_post_recv on the same Endpoint.

6.1.3.4 OBJECT DESTRUCTION

DAT explicitly disallows operate/destroy races completely. No routine
(including a thread-safe and Signal and Exception handler safe routine)
can be called while one of the objects on which it is operating is being
destroyed, and an object destruction routine cannot be called while
another routine is operating on that object, regardless of the thread safety
of that other routine. Note that this makes object destruction routines
exclusive with all other routines acting on the same object, whether thread
safe or not, and whether that object is primary to the other routine or not.
uDAPL Consumers cannot call any object destruction routine
simultaneously with any other routine that operates on that object in any
 Page 67

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
fashion. If this restriction is violated, the consequences are undefined (and
are likely to be severe).

For two potentially blocking routines dat_evd_wait and dat_cno_wait,
there is a recommendation to unblock a waiting thread before object
destruction. For EVD, it is to use dat_evd_set_unwaitable (see 6.3.4.7
DAT_EVD_Set_Unwaitable on page 130 and 6.3.4.2 DAT_EVD_Free on
page 126), and for CNO, it is to use dat_evd_post_se (see 6.3.2.2.1
Usage on page 119).

From the Consumer's perspective, dat_cr_accept, dat_cr_reject, and dat_
cr_handoff are object destruction routines; the CR is not available to the
Consumer after calling these routines. Hence, it is not permissible to use
the CR in one of these routines simultaneously with its use in any other
routine, or to use the CR in any other routine after it has been passed to
one of these routines.

6.1.3.5 SAFETY SPECIFICATION

For each of the uDAPL routines, it is defined as being either thread safe,
non-thread safe, or that its thread safety is Provider-dependent. Provider-
dependent routines take their thread safety from the is_thread_safe
boolean in the DAT_PROVIDER_INFO structure (see 8.2.2.1 DAT_
Registry_List_Providers on page 310).

The following Table 1 summarizes thread and Signal and Exception
handler safety for each call.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes

dat_ia_open Thread safe yes no

dat_ia_query Thread safe Provider-
dependent

Provider-
dependent

Noncritical path routines should
be thread safe for Consumer
convenience.
 Page 68

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_ia_close Non-thread
safe

yes no By the definitions given above,
all object destruction are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_set_
consumer_context

Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_get_
consumer_context

Provider-
dependent

no Provider-
dependent

dat_get_handle_
type

Provider-
dependent

no Provider-
dependent

dat_cno_create Thread safe yes no Noncritical path routines should
be thread safe for Consumer
convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 69

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_cno_free Non-thread
safe

yes no By the definitions given above,
all object destruction are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_cno_modify_
agent

Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_cno_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot. Also, there
isn't any obvious reason for
dat_cno_query to be defined
differently from dat_evd_query.

dat_cno_wait Thread safe yes no

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 70

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_cr_query Thread safe Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

dat_cr_accept Non-thread
safe

Provider-
dependent

Provider-
dependent

dat_cr_accept, dat_cr_reject,
and dat_cr_handoff are object
destruction routines; the CR is
not available to the Consumer
after calling these routines.
Hence, it is not permissible to
use the CR in one of these
routines simultaneously with its
use in any other routine, or to
use the CR in any other routine
after it is passed to one of
these routines.

dat_cr_reject Non-thread
safe

Provider-
dependent

Provider-
dependent

dat_cr_accept, dat_cr_reject,
and dat_cr_handoff are object
destruction routines; the CR is
not available to the Consumer
after calling these routines.
Hence, it is not permissible to
use the CR in one of these
routines simultaneously with its
use in any other routine, or to
use the CR in any other routine
after it is passed to one of
these routines.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 71

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_cr_handoff Non-thread
safe

Provider-
dependent

Provider-
dependent

dat_cr_accept, dat_cr_reject,
and dat_cr_handoff are object
destruction routines; the CR is
not available to the Consumer
after calling these routines.
Hence, it is not permissible to
use the CR in one of these
routines simultaneously with its
use in any other routine, or to
use the CR in any other routine
after it is passed to one of
these routines.

dat_evd_create Thread safe yes no Noncritical path routines should
be thread safe for Consumer
convenience.

dat_evd_free Non-thread
safe

yes no By the definitions given above,
all object destruction are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_evd_wait Thread safe yes no Performance Critical operation.

dat_evd_dequeue Thread safe no yes Performance Critical operation.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 72

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_evd_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

dat_evd_modify_
cno

Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_evd_enable Thread Safe no yes

dat_evd_disable Thread Safe no yes

dat_evd_set_
unwaitable

Thread Safe no yes

dat_evd_clear_
unwaitable

Thread Safe no yes

dat_evd_resize Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_evd_post_se Provider-
dependent

no yes Because dat_evd_wait is
defined as thread safe, it is
always acceptable to call dat_
evd_post_se on an EVD that
has a waiter on it, even if dat_
evd_post_se is non-thread
safe.

dat_ep_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 73

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_ep_free Non-thread
safe

yes no By the definitions given above,
all object destruction are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_ep_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

dat_ep_modify Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_ep_connect Provider-
dependent

Provider-
dependent

Provider-
dependent

The connection related EVD
calls might involve modifying
the state related to DTO
posting (a critical path
operation). Hence, making
those calls thread safe might
require locking on the critical
path.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 74

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_ep_common_
connect

Provider-
dependent

Provider-
dependent

Provider-
dependent

The connection related EVD
calls might involve modifying
the state related to DTO
posting (a critical path
operation). Hence, making
those calls thread safe might
require locking on the critical
path.

dat_ep_dup_
connect

Provider-
dependent

Provider-
dependent

Provider-
dependent

The connection related EVD
calls might involve modifying
the state related to DTO
posting (a critical path
operation). Hence, making
those calls thread safe might
require locking on the critical
path.

dat_ep_disconnect Provider-
dependent

Provider-
dependent

Provider-
dependent

The connection related EVD
calls might involve modifying
state related to DTO posting (a
critical path operation). Hence,
making those calls thread safe
might require locking on the
critical path.

dat_ep_reset Provider-
dependent

Provider-
dependent

Provider-
dependent

The connection related EVD
calls may involve modifying
state related to DTO posting (a
critical path operation). Hence
making those calls thread safe
may require locking on the
critical path.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 75

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_ep_post_send Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

dat_ep_post_
send_with_
invalidate

Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 76

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_ep_post_recv Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

dat_ep_post_
rdma_read

Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 77

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_ep_post_
rdma_read_to_rmr

Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

dat_ep_post_
rdma_write

Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_send_with_
invalidate, dat_ep_post_rdma_
write, dat_ep_post_rdma_read,
dat_ep_post_rdma_read_to_
rmr, or dat_rmr_bind at the
same time as another thread is
executing in dat_ep_post_recv.
No more than one thread can
execute in either of these
classes.

dat_ep_get_status Thread safe no yes at_ep_get_status is explicitly
described as not doing heroic
synchronization measures and
hence (implicitly) not
necessarily returning a
coherent state. Hence, the
logic of the above bullet does
not apply to it.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 78

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_lmr_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_lmr_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_lmr_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

dat_rmr_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_rmr_create_
for_ep

Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 79

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_rmr_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_rmr_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 80

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_rmr_bind Provider-
dependent

no yes Performance Critical operation.
In a non-thread safe Provider,
there is an exception to the
general thread safety
restrictions: there can be one
thread executing in one of the
routines dat_ep_post_send,
dat_ep_post_rdma_write, dat_
ep_post_rdma_read, or dat_
rmr_bind at the same time as
another thread is executing in
dat_ep_post_recv. No more
than one thread can execute in
either of these classes.
dat_rmr_bind is special from a
thread safety point of view. If
this routine is non-thread safe,
it cannot be called
simultaneously with any non-
thread safe routines operating
on the Endpoint as their
primary argument. This
restriction is in addition to the
standard non-thread safety
restriction prohibiting multiple
calls with the RMR as the
primary object (first argument).
dat_rmr_bind can be called
simultaneously with dat_ep_
post_recv on the same
Endpoint.

dat_psp_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_psp_create_
any

Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_psp_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_psp_query Thread safe Provider-
dependent

Provider-
dependent

Non-critical path routines
should be thread safe for
Consumer convenience.

dat_rsp_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_rsp_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_rsp_query Thread safe Provider-
dependent

Provider-
dependent

Non-critical path routines
should be thread safe for
Consumer convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 82

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_csp_create_
any

Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_csp_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_csp_query Thread safe Provider-
dependent

Provider-
dependent

Non-critical path routines
should be thread safe for
Consumer convenience.

dat_pz_create Thread safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_pz_free Non-thread
safe

yes no By the definitions given above,
all object destructions are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 83

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_pz_query Thread safe Provider-
dependent

Provider-
dependent

Non-critical path routines
should be thread safe for
Consumer convenience.

dat_srq_create Thread Safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_srq_set_lw Provider
Dependent

Provider-
dependent

Provider-
dependent

dat_srq_free Non-Thread
Safe

yes no By the definitions given above,
all object destruction are non-
thread safe. They all are called
with the only object argument
being the object to be
destroyed, which means that
no other routines on that object
can be in process
simultaneously with them. In
some sense, these routines are
outside the regular scheme,
because threads of execution
being within them prohibits
threads of execution in both
thread safe and non-thread
safe routines on the same
objects.

dat_srq_query Provider-
dependent

Provider-
dependent

Provider-
dependent

Any query routine is presumed
to provide a coherent snapshot
of its object, and making that
snapshot coherent might
require locking both in the
snapshot routine and in any
routines that modify the object's
state. Therefore, it is
inappropriate to make a query
routine thread safe unless that
routine is specifically noted to
not necessarily provide a
coherent snapshot.

dat_srq_resize Provider-
dependent

Provider-
dependent

Provider-
dependent

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 84

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.2 LOCAL RESOURCES MANAGEMENT

6.2.1 INTERFACE ADAPTER

6.2.1.1 DAT_IA_OPEN

Synopsis: DAT_RETURN

dat_ia_open (

IN const DAT_NAME_PTR ia_name_ptr,

IN DAT_COUNT async_evd_min_qlen,

INOUT DAT_EVD_HANDLE *async_evd_handle,

OUT DAT_IA_HANDLE *ia_handle

)

dat_srq_post_recv Provider-
dependent

no yes

dat_ep_create_
with_srq

Thread Safe yes no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_ep_recv_query Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_ep_set_
watermark

Provider-
dependent

Provider-
dependent

Provider-
dependent

dat_lmr_sync_
rdma_read

Provider-
dependent

Provider-
dependent

yes

dat_lmr_sync_
rdma_write

Provider-
dependent

Provider-
dependent

yes

dat_registry_list_
providers

Thread safe Provider-
dependent

no Non-critical path routines
should be thread safe for
Consumer convenience.

dat_registry_
providers_related

Provider-
dependent

Provider-
dependent

no

dat_strerror Thread safe no yes Non-critical path routines
should be thread safe for
Consumer convenience.

Table 1 uDAPL API calls safety specification.

uDAPL Call Thread Safety Blocking
Signal and
Exception
Handling safe

Notes
 Page 85

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Parameters:

Description: dat_ia_open opens an IA by creating an IA instance. Multiple instances
(opens) of an IA can exist.

The value of DAT_HANDLE_NULL for async_evd_handle (*async_evd_
handle == DAT_HANDLE_NULL) indicates that the default Event
Dispatcher is created with the requested async_evd_min_qlen. The
async_evd_handle returns the handle of the created Asynchronous Event
Dispatcher. The first Consumer that opens an IA must use DAT_
HANDLE_NULL because no EVD can yet exist for the requested ia_
name_ptr.

The Asynchronous Event Dispatcher (async_evd_handle) is created with
no CNO (DAT_HANDLE_NULL). Consumers can change these values
using dat_evd_modify_cno. The Consumer can modify parameters of the
Event Dispatcher using dat_evd_resize and dat_evd_modify_cno.

The Provider is required to provide a queue size at least equal to async_
evd_min_qlen, but is free to provide a larger queue size or dynamically
enlarge the queue when needed. The Consumer can determine the actual
queue size by querying the created Event Dispatcher instance.

If async_evd_handle is not DAT_HANDLE_NULL, the Provider does not
create an Event Dispatcher for an asynchronous event and the Provider
ignores the async_evd_min_qlen value. The async_evd_handle value
passed in by the Consumer must be an asynchronous Event Dispatcher
created for the same Provider (ia_name_ptr). The Provider does not have
to check for the validity of the Consumer passed in async_evd_handle. It
is the Consumer responsibility to guarantee that async_evd_handle is
valid and for this Provider. How the async_evd_handle is passed between
DAT Consumers is out of scope of the DAT specification. If the Provider
determines that the Consumer-provided async_evd_handle is invalid, the
operation fails and returns DAT_INVALID_HANDLE. The async_evd_
handle remains unchanged, so the returned async_evd_handle is the
same the Consumer passed in. All asynchronous notifications for the open

ia_name_ptr: Symbolic name for the IA to be opened. The name
should be defined by the Provider registration.

async_evd_min_qlen: Minimum length of the Asynchronous Event
Dispatcher queue.

async_evd_handle: Pointer to a handle for an Event Dispatcher for
asynchronous events generated by the IA. This
parameter can be DAT_EVD_ASYNC_EXISTS to
indicate that there is already EVD for asynchronous
events for this Interface Adapter or DAT_HANDLE_
NULL for a Provider to generate EVD for it.

ia_handle: Handle for an open instance of a DAT IA. This
handle is used with other functions to specify a
particular instance of the IA.
 Page 86

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

instance of the IA are directed by the Provider to the Consumer passed in
Asynchronous Event Dispatcher specified by async_evd_handle.

Consumer can specify the value of DAT_EVD_ASYNC_EXISTS to
indicate that there exists an event dispatcher somewhere else on the host,
in user or kernel space, for asynchronous event notifications. It is up to the
Consumer to ensure that this event dispatcher is unique and
unambiguous. A special handle may be returned for the Asynchronous
Event Dispatcher for this scenario, DAT_EVD_OUT_OF_SCOPE, to
indicate that there is a default Event Dispatcher assigned for this Interface
Adapter, but that it is not in a scope where this Consumer may directly
invoke it.

The Asynchronous Event Dispatcher is an Object of both the Provider and
IA. Each Asynchronous Event Dispatcher bound to an IA instance is
notified of all asynchronous events, such that binding multiple
Asynchronous Event Dispatchers degrades performance by duplicating
asynchronous event notifications for all Asynchronous Event Dispatchers.
Also, transport and memory resources can be consumed per Event
Dispatcher bound to an IA.

As with all Event Dispatchers, the Consumer is responsible for
synchronizing access to the event queue.

dat_ia_open is synchronous and thread safe.

Valid IA names are obtained from dat_registery_list_providers, as defined
by the Provider registration (see Section 8.2.2.1 on page 310).

Returns:

6.2.1.1.1 USAGE

dat_ia_open is the root method for the Provider, and, thus, all Objects. It
is the root handle through which the Consumer obtains all other DAT
handles. When the Consumer closes its handle, all its DAT Objects are
released.

Consumers can also use dat_ia_openv (see 8.3.3 Version Support for IA
open on page 316) that allows them to specify DAT version number as
well as thread safety for the library to be used directly instead of relying

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_NAME_NOT_FOUND The specified IA name was not
found in the list of registered
Providers.

DAT_INVALID_HANDLE Invalid DAT handle; async_evd_
handle is invalid.
 Page 87

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
on the uDAPL configuration header file (see 8.3.3 Version Support for IA
open on page 316) for it.

6.2.1.1.2 RATIONALE

dat_ia_open is the workhorse method that provides an IA instance. It can
also initialize the Provider library or do any other registry-specific
functions.

6.2.1.1.3 MODEL IMPLICATIONS

dat_ia_open creates a unique handle for the IA to the Consumer. All
further DAT Objects created for this Consumer reference this handle as
their owner.

When IA is open the High Availability events are automatically associated
with Asyncronous EVD.

dat_ia_open can use a reference count for the Provider Library to ensure
that the Provider Library cannot be removed when it is in use by a DAT
Consumer.

6.2.1.2 DAT_IA_CLOSE

Synopsis: DAT_RETURN

dat_ia_close (

IN DAT_IA_HANDLE ia_handle,

IN DAT_CLOSE_FLAGS ia_flags

)

Parameters:

Description: dat_ia_close closes an IA (destroys an instance of the Interface Adapter).

ia_handle: Handle for an instance of a DAT IA.

ia_flags: Flags for IA closure. Default value of DAT_CLOSE_DEFAULT
= DAT_CLOSE_ABRUPT _FLAG represents abrupt closure of
IA. See Table 2 for flag definitions.

Table 2 IA Closure Flag Definitions

Features Definition Description

Abrupt close DAT_CLOSE_ABRUPT_FLAG Abrupt cascading close of IA including all Consumer
created DAT objects.

Graceful close DAT_CLOSE_GRACEFUL_FLAG Closure is successful only if all DAT objects created by
the Consumer have been freed before the graceful
closure call.
 Page 88

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The ia_flags specify whether the Consumer wants abrupt or graceful
close.

The abrupt close does a phased, cascading destroy. All DAT Objects
associated with an IA instance are destroyed. These include all the
connection oriented Objects: public and reserved Service Points;
Endpoints, Connection Requests, LMRs (including lmr_contexts), RMRs
(including rmr_contexts), Event Dispatchers, CNOs, and Protection
Zones. All waiters on all CNOs, including the OS Wait Proxy Agents, are
unblocked with the DAT_HANDLE_NULL handle returns for an
unblocking EVD. All direct waiters on all EVDs are also unblocked and
return with DAT_ABORT.

The graceful close does a destroy only if the Consumer has done a
cleanup of all DAT objects created by the Consumer with the exception of
the asynchronous EVD. Otherwise, the operation does not destroy the IA
instance and returns the DAT_INVALID_STATE.

If async EVD was created as part of the of dat_ia_open, dat_ia_close
must destroy it. If async_evd_handle was passed in by the Consumer at
dat_ia_open, this handle is not destroyed. This is applicable to both
abrupt and graceful ia_flags values.

Because the Consumer did not create async EVD explicitly, the
Consumer does not need to destroy it for graceful close to succeed.

It is illegal to use the destroyed handle in any subsequent operation.

dat_ia_close is synchronous and not thread safe.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations. The current dat_ia_close
operation has failed but future
attempts to close the IA may
succeed. Since the IA handle may
be partially torn down the IA handle,
or any of its descendent objects,
may only be used for subsequent
invocations of dat_ia_close.

DAT_INTERNAL_ERROR A consistency check failure prevents
cleanly closing the IA and
recovering the resources associated
with the IA. Subsequent calls to dat_
ia_close on ia_handle are
guaranteed not to succeed.
Remaining DAT resources
associated with ia_handle can be
recovered only when the process
exits.
 Page 89

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.2.1.2.1 USAGE

dat_ia_close is the root cleanup method for the Provider, and, thus, all
Objects.

Consumers are advised to explicitly destroy all Objects they created prior
to closing the IA instance, but can use this function to clean up everything
associated with an open instance of IA. This allows the Consumer to clean
up in case of errors.

Note that an abrupt close implies destruction of EVDs and CNOs. Just as
with explicit destruction of an EVD or CNO, the Consumer should take
care to avoid a race condition where a Consumer ends up attempting to
wait on an EVD or CNO that has just been deleted.

The techniques described in dat_cno_free (See Section 6.3.2.2, “DAT_
CNO_Free,” on page 119) and dat_evd_free (See “DAT_EVD_Free” on
page 126.) can be used for these purposes.If the Consumer desires to
shut down the IA as quickly as possible, the Consumer can call dat_ia_
close(abrupt) without unblocking CNO and EVD waiters in an orderly
fashion. There is a slight chance that an invalidated DAT handle will cause
a memory fault for a waiter. But this might be an acceptable behavior,
especially if the Consumer is shutting down the process.

6.2.1.2.2 RATIONALE

No provision is made for blocking on event completion or pulling events
from queues.

This is the general cleanup and last resort method for Consumer recovery.
An implementation must provide for successful completion under all
conditions, avoiding hidden resource leakage (dangling memory, zombie
processes, and so on) eventually leading to a reboot of the operating
system.

6.2.1.2.3 MODEL IMPLICATIONS

dat_ia_close deletes all Objects that were created using the IA handle.

dat_ia_close can decrement a reference count for the Provider Library that
is incremented by dat_ia_open to ensure that the Provider Library cannot
be removed when it is in use by a DAT Consumer.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; ia_flags is invalid.

DAT_INVALID_STATE Parameter in an invalid state. IA
instance has Consumer created
objects associated with it.
 Page 90

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

DAT_INSUFFICIENT_RESOURCES indicates that a transient error has
occurred and the Consumer may retry the close operation later. The
Consumer may not use the handles of DAT objects which are descended
from ia_handle after this return code from dat_ia_close. If the DAT_
CLOSE_GRACEFUL_FLAG is set then DAT_INSUFFICIENT_
RESOURCES may be returned only after dat_ia_close has verified that
ia_handle is in the appropriate state for a graceful close with associated
objects previously cleaned up by the Consumer.

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to the
destroyed object.

6.2.1.3 INTERFACE ADAPTER ATTRIBUTES

The IA attributes are common to all open instances of the IA. DAT defines
a method to query the IA attributes but does not define a method to modify
them.

If IA is multiported, each port is presented to a Consumer as a separate
IA. In the cases when the multiport IA provides special semantics that go
beyond separate IA semantics, the Provider can present it as a single IA.
An example of it is a dual port IA that automatically provides multipathing
for each connection for failover support.

Adapter name: The name of the IA controlled by the
Provider. The same as ia_name_ptr.

Vendor name: Vendor of IA hardware.

HW version major: Major version of IA hardware.

HW version minor: Minor version of IA hardware.

Firmware version major: Major version of IA firmware.

Firmware version minor: Minor version of IA firmware.

IA_address_ptr: An address of the Interface Adapter.

Max EPs: Maximum number of Endpoints that the IA
can support. This covers all Endpoints in all
states, including the ones used by the
Providers, zero or more applications, and
management.

Max DTOs per EP: Maximum number of DTOs and RMR_
binds that any Endpoint can support for
single direction. This means the maximum
number of outstanding and in-progress
Send, RDMA Read, RDMA Write DTOs,
and RMR Binds at any one time for any
Endpoint; and maximum number of
outstanding and in-progress Receive DTOs
at any one time for any Endpoint.
 Page 91

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Max incoming RDMA Reads
per EP:

Maximum number of RDMA Reads that
can be outstanding per (connected)
Endpoint with the IA as the target.

Max outgoing RDMA Reads per
EP:

Maximum number of RDMA Reads that
can be outstanding per (connected)
Endpoint with the IA as the originator.

Max EVDs: Maximum number of Event Dispatchers
that an IA can support. An IA cannot
support Event Dispatcher directly, but
indirectly by Transport-specific Objects, for
example, Completion Queues for
Infiniband™, VI and iWARP. The Event
Dispatcher Objects can be shared among
multiple Providers and similar Objects from
other APIs, for example, Event Queues for
DAPL.

Max EVD queue size: Maximum size of the EVD queue
supported by an IA.

Max IOV segments per non-
RDMA DTO:

Maximum entries in an IOV list for non-
RDMA DTOs that an IA supports. Notice
that this number cannot be explicit but
must be implicit to transport-specific Object
entries. For example, for IB, it is the
maximum number of scatter/gather entries
per Work Request, and for VI it is the
maximum number of data segments per VI
Descriptor.

Max LMRs: Maximum number of Local Memory
Regions IA supports among all Providers
and applications of this IA.

Max LMR block size: Maximum contiguous block that can be
registered by the IA.

Max LMR VA: Highest valid virtual address within the
context of an LMR. Frequently, IAs on 32-
bit architectures only support 32-bit local
virtual addresses.

Max PZs: Maximum number of Protection Zones that
the IA supports.

Max Message size: Maximum message size supported by the
IA.

Max RDMA size: Maximum RDMA size supported by the IA.

Max RMRs: Maximum number of RMRs an IA supports
among all Providers and applications of
this IA.
 Page 92

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Max RMR target address: Highest valid target address with the
context of a local RMR. Frequently, IAs on
32-bit architectures only support 32-bit
local virtual addresses.

Max SRQs: Maximum number of Shared Received
Queues that the IA can support.

Max EPs per SRQ: Maximum number of EPs that can use a
Shared Received Queue simultaneously.

Max Recv DTOs per SRQ: Maximum number of Recv DTOs that a
Shared Received Queue can support.

Max IOV segments for RDMA
Read:

Maximum entries in an IOV list for RDMA
Read DTO that an IA supports. For
example for iWARP it should be 1, while for
IB it should be the same as for other DTOs.

Max IOV segments for RDMA
Write:

Maximum entries in an IOV list for RDMA
Write DTO that an IA supports. For
example for IB it should be the same as for
other DTOs, while for iWARP it can be
different.

Max incoming RDMA Reads: Maximum number of inbound RDMA
Reads that the HCA/RNIC can support.
This covers all open instances of IA.

Max outgoing RDMA Reads: Maximum number of outbound RDMA
Reads that the HCA/RNIC can support.
This covers all open instances of IA.

Max RDMA Reads per
Endpoint IN guarantee:

Indicator whether or not maximum
incoming RDMA Read resources are
guaranteed per Endpoint. DAT_FALSE
means that maximum incoming RDMA
Read per EP is guaranteed and every
Endpoint can get this maximum. DAT_
TRUE means that maximum incoming
RDMA Read resources are not guaranteed
per Endpoint. This means that the
incoming RDMA Read resources are
shared between EPs at HCA/RNIC. So the
number of incoming RDMA Read allocated
to an Endpoint affects the number of
incoming RDMA Read resources available
for other Endpoints of all instances of IA on
the HCA/RNIC.
 Page 93

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.2.1.3.1 MODEL IMPLICATIONS

If RDMA Read resources on RNIC/HCA are shared between Endpoints
then it affects Consumes that rely on ability to create an Endpoint with pre-

Max RDMA Reads per
Endpoint OUT guarantee:

Indicator whether or not maximum
outgoing RDMA Read resources are
guaranteed per Endpoint. DAT_FALSE
means that maximum outgoing RDMA
Read per EP is guaranteed and every
Endpoint can get this maximum. DAT_
TRUE means that maximum outgoing
RDMA Read resources are not guaranteed
per Endpoint. This means that the outgoing
RDMA Read resources are shared
between EPs at HCA/RNIC. So the number
of outgoing RDMA Read allocated to an
Endpoint affects the number of outgoing
RDMA Read resources available for other
Endpoints of all instances of IA on the
HCA/RNIC.

ZB support: Binary indicator of support of zero-based
Virtual Addressing for LMR.

Extension interface: The DAT_EXTENSION_INTERFACE can
have of the three values: DAT_
EXTENSION_IB, DAT_EXTENSION_IW,
or DAT_EXTENSION_NONE. The last of
them indicates that Provider does not
support extensions. DAT Provider can
support either IB or iWARP extension but
not both.

Extension version: The DAT_EXTENSION_VERSION
indicates which version of the extension
interface Provider supports.

Num transport attributes: Number of transport-specific attributes

Transport-specific attributes: Array of transport-specific attributes. Each
entry has the format of DAT_NAMED_
ATTR, which is a structure with two
elements. The first element is the name of
the attribute, and the second is the value of
the attribute as a string.

Num vendor attributes: Number of vendor-specific attributes

Vendor-specific attributes: Array of vendor-specific attributes. Each
entry has the format of DAT_NAMED_
ATTR, which is a structure with two
elements. The first element is the name of
the attribute, and the second is the value of
the attribute as a string.
 Page 94

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

specified number of incoming or outgoing RDMA Read. Consumers can
address the situation by choosing the Provider that provide guaranteed
number of RDMA Reads per Endpoint or by configuring the application to
handle lack of the RDMA Read resources per Endpoint, for example, by
pre-allocating Endpoints first, or responding to connection requests with
smaller than requested RDMA Read support numbers. Most client-server
based applications need to be able to handle a response to a connection
request where a server is unable to allocated the requested RDMA Read
incoming credits.

6.2.1.3.2 DAT EXTENSIONS ATTRIBUTES

DAT Provider can support IB or iWARP extensions that are defined by
separate documents. DAT_EXTENSION_INTERFACE and DAT_
EXTENSION_VERSION attributes indicate which extension and which
version of the extension Provider supports. Each extension defines their
own transport specific attributes.

6.2.1.4 DAPL PROVIDER ATTRIBUTES

The list of Provider attributes. The Provider attributes are specific to the
open instance of the IA. DAT defines a method to query Provider attributes
but does not define a method to modify them.

Provider name: Name of the Provider vendor.

Provider version major: Major Version of uDAPL Provider.

Provider version minor: Minor Version of uDAPL Provider.

DAPL API version major: Major Version of uDAPL API supported.

DAPL API version minor: Minor Version of uDAPL API supported.

LMR memory types supported: Memory types that LMR Create supports
for memory registration. This value is a
union of LMR Memory Types DAT_MEM_
TYPE_VIRTUAL, DAT_MEM_TYPE_
LMR, and DAT_MEM_TYPE_SHARED_
VIRTUAL that the Provider supports. All
Providers must support the following
Memory Types: DAT_MEM_TYPE_
VIRTUAL, DAT_MEM_TYPE_SHARED_
VIRTUAL, and DAT_MEM_TYPE_LMR.
 Page 95

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
IOV ownership: An enumeration flag that specifies the
ownership of the local buffer description
(IOV list) after post DTO returns. The
three values are as follows:
DAT_IOV_CONSUMER indicates that the
Consumer has the ownership of the local
buffer description after a post returns,
DAT_IOV_PROVIDER_NOMOD
indicates that the Provider still has
ownership of the local buffer description
of the DTO when the post DTO returns,
but the Provider does not modify the
buffer description, and DAT_IOV_
PROVIDER_MOD indicates that the
Provider still has the ownership of the
local buffer description of the DTO when
the post DTO returns and that the
Provider can modify the buffer
description. In any case, the Consumer
obtains ownership of the local buffer
description after the DTO transfer is
completed and the Consumer is notified
through a DTO completion event.

QOS supported: The union of the connection QOS
supported by the Provider.

Completion flags supported: Completion flag - DAT_COMPLETION_
FLAGS values: DAT_COMPLETION_
SUPPRESS_FLAG, DAT_
COMPLETION_UNSIGNALLED_FLAG,
DAT_COMPLETION_SOLICITED_
WAIT_FLAG, and DAT_COMPLETION_
BARRIER_FENCE_FLAG supported by
the Provider.

Thread safety: Provider Library thread safe or not. The
Provider Library is not required to be
thread safe.

Max private data size: Maximum size of private data the
Provider supports. This value is at least
64 bytes.

Multipathing support: Capability of the Provider to support
Multipathing for connection
establishment.
 Page 96

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

EP creator for PSP: Indicator about who can create an
Endpoint for a Connection Request:
Consumer - DAT_PSP_CREATES_EP_
NEVER, Provider - DAT_PSP_
CREATES_EP_ALWAYS, or both - DAT_
PSP_CREATES_EP_IFASKED. It is used
for Public Service Point creation.

PZ support: Indicator of what kind of protection the
Provider’s PZ provides.
- DAT_PZ_UNIQUE - Each Protection
Zone is unique within the scope of the IA
it was created, and it has been assigned
exclusive use of some hardware/verb
layer matching resource. For example,
this means that the PZ has been
assigned ownership of a Protection
Domain ID for IB and iWARP.
- DAT_PZ_SHARABLE - The Protection
Zone has a uniquely assigned hardware
layer resource, but may be shared with
other processes. Sharing can be
achieved as the result of administrative
configuration, ability of a Provider to
support sharing of pz_handles among
processes and/or supplemental API calls
that are outside the scope of DAT.

Optimal Buffer Alignment Local and remote DTO buffer alignment
for optimal performance on the Platform.
The DAT_OPTIMAL_ALIGNMENT must
be divisible by this attribute value. The
maximum allowed value is DAT_
OPTIMAL_ALIGNMENT (256).

EVD stream merging support a 2D binary matrix where each row and
column represents an event stream type.
Each binary entry is 1 if the event streams
of its row and column can fed to the same
EVD, and 0 otherwise.
More than two different event stream
types can feed the same EVD if for each
pair of the event stream types the entry is
1.
Provider should support merging of all
event stream types.
Consumer should check this attribute
before requesting an EVD that merges
multiple event stream types.
 Page 97

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
SRQ support Capability of Provider to support Shared
Receive Queues. DAT_FALSE means
that SRQs are not supported, DAT_TRUE
means that SRQs are supported. DAPL
versions 1.1 and earlier do not support
SRQ.

SRQ Watermark Support Indicator of which Watermark associated
with SRQ capabilities are supported by
the Provider.
- 0x000 - No Watermarks are supported.
- 0x001 - SRQ Low Watermark is
supported.
- 0x010 - Soft High Watermark for EP
associated with SRQ is supported.
- 0x0100 - Hard High Watermark for EP
associated with SRQ is supported.

PZ mismatch for SRQ and EPs Indicator whether or not the Provider
supports different PZs for SRQ and EPs
that use it. DAT_FALSE means that PZ
must be the same for SRQ and EP and
DAT_TRUE means that it can be
different.

SRQ info support Indicator of which SRQ info queries are
supported by the Provider.
- 0x01 - SRQ available Recv buffers
information is supported.
- 0x10 - SRQ outstanding Recv buffers
information is supported.
If supported that information is returned
by dat_srq_query as available_dto_count
and outstanding_dto_count in dat_srq_
param structure.

EP Recv info support Indicator of which EP Recv info queries
are supported by the Provider.
- 0x01 - SRQ buffers on EP information is
supported.
- 0x10 - information for the number of
SRQ buffers needed by an EP to
complete arriving messages is supported.
If supported that information is returned
by dat_ep_recv_query as nbufs_allocated
and bufs_alloc_span.
 Page 98

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

LMR synchronization
requirement

Binary indicator for the need to use
synchronization calls in conjunction with
RDMA operations. DAT_TRUE means
that dat_lmr_sync_rdma_read and dat_
lmr_sync_rdma_write are required on
remote side of RDMA op initiator, and
DAT_FALSE means that no
synchronization calls are needed.

DTO asynchronous return
guarantee

Boolean attribute for asynchronous return
guarantee for Send and RDMA Write. The
DAT_TRUE means that the
asynchronous returns defined in
Section 6.8.2 on page 295 are generated
for Send and RDMA Write for each
defined return value. DAT_FALSE means
that not all return values can be
generated.

RDMA Write req for RDMA Read Boolean attribute that indicates whether
RDMA Write is required for a buffer for
RDMA Read accesses. DAT_
TRUE means that both RDMA Write and
RDMA Read privileges are required for a
buffer for RDMA Read access. DAT_
FALSE means that RDMA Write
privileges are not required for RDMA
Read buffer accesses.

RDMA Read LMR Context
exposure

Boolean attribute that indicates
whether use of the RMR Context as
the sink of an RDMA Read is required
to prevent exposing the RMR Context
of the LMR Context to the wire.

RMR scopes supported Attribute specifying whether Provider
supports RMR scoped to PZ, single
EP, or all types.

Signal and Exception handler
safety:

Provider Library Signal and Exception
handler safe or not. The Provider Library
is not required to be Signal and Exception
handler safe. Even when Provider library
is not Signal and Exception handler safe
some of the Provider-dependent
functions can be Signal and Exception
handler safe.

HA support Boolean attribute that indicates
whether Provider supports HA or not.
 Page 99

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.2.1.5 DAT_IA_QUERY

Synopsis: DAT_RETURN

dat_ia_query (

IN DAT_IA_HANDLE ia_handle,

OUT DAT_EVD_HANDLE *async_evd_handle,

IN DAT_IA_ATTR_MASK ia_attr_mask,

OUT DAT_IA_ATTR *ia_attributes,

IN DAT_PROVIDER_ATTR_MASK provider_attr_mask,

OUT DAT_PROVIDER_ATTR *provider_attributes

)

Parameters:

HA load balancing Attribute specifying which load
balancing for HA are provided. DAT_
HA_LB_NONE indicates that no load
balancing is provided. DAT_HA_LB_
INTERCONN indicates that
connection level load balancing is
provided. That is Provider load
balances DAT connections at
connection establishment time over
multiple available physical paths
between the same pair of nodes.
DAT_HA_LB_INTRACONN indicates
that intra-connection level load
balancing is provided. That is
Provider layers DAT Connection over
multiple physical paths and Provider
load balances connection traffic over
physical paths preserving DAT
transport and API requirements.

Num provider attributes: Number of Provider-specific attributes

Provider-specific attributes: Array of Provider-specific attributes. Each
entry has the format of DAT_NAMED_
ATTR, which is a structure with two
elements. The first element is the name of
the attribute, and the second is the value
of the attribute as a string.

ia_handle: Handle for an open instance of an IA.

async_evd_handle: Handle for an Event Dispatcher for asynchronous
events generated by the IA.

ia_attr_mask: Mask for the ia_attributes.
 Page 100

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_ia_query provides the Consumer with the IA parameters, as well as
the IA and Provider attributes. Consumers pass in pointers to Consumer-
allocated structures for the IA and Provider attributes that the Provider
fills.

ia_attr_mask and provider_attr_mask allow the Consumer to specify
which attributes to query. The Provider returns values for requested
attributes. The Provider can also return values for any of the other
attributes.

dat_ia_query is synchronous and thread safe.

Returns:

6.2.1.5.1 USAGE

Consumer can specify DAT_IA_FIELD_NONE or DAT_PROVIDER_
FIELD_NONE if only Provider attributes or IA attributes are requested,
respectively.

dat_ia_query is synchronous and thread safe.

6.2.1.5.2 RATIONALE

6.2.1.5.3 MODEL IMPLICATIONS

6.2.2 CONSUMER CONTEXT

These two operations allow Consumers to associate and retrieve user
context information about any DAT Object instance. The Consumer can
supply/obtain a pointer to a data structure that is opaque to the Provider.
Each DAT Object maintains a single Consumer context. This data has no
semantic meaning to the Provider. The user must synchronize all access.

By default, all DAT Objects are created with a NULL value for the
Consumer Context.

6.2.2.1 DAT_SET_CONSUMER_CONTEXT

Synopsis: DAT_RETURN

ia_attributes: Pointer to a Consumer-allocated structure that the
Provider fills with IA attributes.

provider_attr_mask: Mask for the provider_attributes.

provider_attributes: Pointer to a Consumer-allocated structure that the
Provider fills with Provider attributes.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter;

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is
invalid.
 Page 101

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_set_consumer_context (

IN DAT_HANDLE dat_handle,

IN DAT_CONTEXT context

)

Parameters:

Description: dat_set_consumer_context associates a Consumer context with the
specified dat_handle. The dat_handle can be one of the following handle
types: DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE,
DAT_CR_HANDLE, DAT_RSP_HANDLE, DAT_PSP_HANDLE, DAT_
CSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE, or DAT_RMR_
HANDLE, or DAT_CNO_HANDLE.

Only a single Consumer context is provided for any dat_handle. If there is
a previous Consumer context associated with the specified handle, the
new context replaces the old one. The Consumer can disassociate the
existing context by providing a NULL pointer for the context. The Provider
makes no assumptions about the contents of context; no check is made
on its value. Furthermore, the Provider makes no attempt to provide any
synchronization for access or modification of the context.

dat_set_consumer_context is synchronous. Its thread safety is Provider-
dependent.

Returns:

6.2.2.2 DAT_GET_CONSUMER_CONTEXT

Synopsis: DAT_RETURN

dat_get_consumer_context (

IN DAT_HANDLE dat_handle,

OUT DAT_CONTEXT *context

)

dat_handle: Handle for a DAT Object associated with context.

context: Consumer context to be stored within the associated dat_
handle. The Consumer context is opaque to the uDAPL
Provider. NULL represents no context.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; context is invalid.

DAT_INVALID_HANDLE Invalid DAT handle; dat_handle is
invalid.
 Page 102

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Parameters:

Description: dat_get_consumer_context gets the Consumer context from the specified
dat_handle. The dat_handle can be one of the following handle types:
DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_
HANDLE, DAT_PSP_HANDLE, DAT_RSP_HANDLE, DAT_CSP_
HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE, or DAT_RMR_
HANDLE, or DAT_CNO_HANDLE.

dat_get_consumer_context is synchronous. Its thread safety is Provider-
dependent.

Returns:

6.2.2.2.1 USAGE

6.2.2.2.2 RATIONALE

This functionality is commonly used for directives by ULPs for
asynchronous models of communication.

6.2.2.2.3 MODEL IMPLICATIONS

Two user context operations are generic for all DAT handles.

6.2.2.3 DAT_GET_HANDLE_TYPE

Synopsis: DAT_RETURN

dat_get_handle_type (

IN DAT_HANDLE dat_handle,

OUT DAT_HANDLE_TYPE *handle_type

)

Parameters:

Description: dat_get_handle_type allows the Consumer to discover the type of a DAT
Object using its handle. The dat_handle can be one of the following

dat_handle: Handle for a DAT Object associated with the context.

context: Pointer to Consumer-allocated storage where the current value
of the dat_handle context will be stored.

DAT_SUCCESS The operation was successful. The
Consumer context was successfully
retrieved from the specified handle.

DAT_INVALID_HANDLE Invalid DAT handle; dat_handle is
invalid.

dat_handle: Handle for DAT Object.

handle_type: Type of the handle of dat_handle.
 Page 103

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
handles: DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE,
DAT_CR_HANDLE, DAT_PSP_HANDLE, DAT_RSP_HANDLE, DAT_
CSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE, or DAT_RMR_
HANDLE. The handle_type is one of the following handle types: DAT_
HANDLE_TYPE_IA, DAT_HANDLE_TYPE_EP, DAT_HANDLE_TYPE_
EVD, DAT_HANDLE_TYPE_CR, DAT_HANDLE_TYPE_PSP, DAT_
HANDLE_TYPE_RSP, DAT_HANDLE_TYPE_CSP, DAT_HANDLE_
TYPE_PZ, DAT_HANDLE_TYPE_LMR, DAT_HANDLE_TYPE_RMR, or
DAT_HANDLE_TYPE_CNO.

dat_get_handle_type is synchronous. Its thread safety is Provider-
dependent.

Returns:

6.2.2.3.1 USAGE

Consumers can use this operation to determine the type of Object being
returned. This is needed for calling an appropriate query or any other
operation on the Object handle.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; dat_handle is
invalid.
 Page 104

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.2.2.3.2 RATIONALE

6.2.2.3.3 MODEL IMPLICATIONS

6.3 EVENT MANAGEMENT

6.3.1 EVENT MODEL

Figure 1 Event Model
uDAPL provides a common model for notifications and connection
management events, data transfer completions, asynchronous errors,
and all other notifications. These are logically grouped into Event
Streams.

Event streams feed into Event Dispatchers, which provide queues to
gather the events.

• An Event Stream is a source of notifications. For uDAPL, these
include the following:
• Data transfer completions
• Connection Request arrivals
• Connection events, including connection establishment

completions, disconnect notifications, timed out, unreachable,
and other connection events

• Remote memory bind completions

Event
Dispatcher

Event Queue

Event Streams
(order within streams)
Connection
Request arrival
DTO Completions
incoming/outgoing

Asynchronous
Errors

Connection Events
RMR bind
Software Events

CNO

Event
Dispatcher

Event Queue

Event Streams
(order within streams)
Connection
Request arrival
DTO Completions
incoming/outgoing

Asynchronous
Errors

Connection Events
RMR bind
Software Events

CNO
 Page 105

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• IA Asynchronous errors and events including HA events. Note
that SRQ limit notifications are not neccessarily “errors”.

• Software (user) generated notications
• An Event Dispatcher merges events from one or more event

streams into a single conceptual queue that the Consumer can
dequeue. The Event Dispatcher is responsible for completing any
transport-specific fetching and handshaking for the events it is
reporting. Each event is dequeued exactly once.

• The Consumer can directly wait on a single Event Dispatcher that
dequeues the first event from the Event Dispatcher queue. Wait
optionally blocks the current thread. The Consumer controls blocking
via timeout and threshold parameters, and by completion flags of
posted DTOs and RMRs for their completion events. The Consumer
cannot wait on an Unwaitable Event Dispatcher.

• A Consumer can wait for a Notification event or any event if an EVD
is configured for DAT_EVD_STATE_CONFIG_THRESHOLD (These
events are called Notifiable events.) on a set of Event Dispatchers
from a single Provider using a CNO. The Consumer is awakened
with a handle to an Event Dispatcher that had a notifiable event. The
Consumer can then collect events from that or any other Event
Dispatchers.

• A CNO can optionally trigger an OS-dependent interprocess
communications method using an OS Wait Proxy Agent. At least
one form of proxy agent is defined for each host OS. Providers can
define additional variations.

Event Streams are identified in a transport independent fashion. Each
Event Stream can be assigned to only one Event Dispatcher. Multiple
Event Streams can be assigned to a single Event Dispatcher. Interactions
between an Event Dispatcher and its associated Event Streams can be
transport- and OS-dependent as well as Provider (IA)-specific.

uDAPL defines a NULL handle (DAT_HANDLE_NULL). In the Event
Dispatcher case, it represents the NULL Event Dispatcher. Consumers
can assign one or more Event Streams to the NULL Event Dispatcher if
they choose to ignore the notifications. The NULL Event Dispatcher is not
the same as a disabled Event Dispatcher. The NULL Event Dispatcher
never overflows; all incoming events are just dropped. The NULL Event
Dispatcher does not support any Event Dispatcher operations except dat_
evd_query.

In contrast, a disabled Event Dispatcher supports all Event Dispatcher
operations, and incoming events are queued. The queue can overflow
and, therefore, generate an overflow error that is reported on the IA
Asynchronous error Event Dispatcher.

Consumers can also generate events. These events form a separate
stream: the Software Event stream. They are always Notification events
 Page 106

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

and cannot be masked as uDAPL Provider events (the assumption being
that is not a reason for the Software Event Stream). Providers can support
a separate operation on an Event Dispatcher that provides a Consumer
the ability to mask Consumer events as uDAPL events, but they must not
use DAT function name prefixes for the Consumer routines. This
operation can be very useful for debugging.

Extension objects can also generate events. These events do not form a
separate stream but use one of the regular event streams. But in order to
simplify Consumer event logic a pseudo event type of DAT_
EXTENSION_EVENT is defined.

An Event Dispatcher instance can only process Event Streams from a
single IA. An IA can have multiple Event Dispatcher instances associated
with it.

The High Availability events are associated with the Asynchronous IA
EVD. Consumer should ensure that the Asynchronous IA EVD is sized
appropriately for HA events.

The Event Dispatcher is responsible for ensuring that the Event Streams
are emptied. Ensuring that this is done promptly is left to the market forces
and/or later versions of this specification.

Ordering of events within an Event Stream must be preserved. Ordering
of events between different Event Streams is defined as follows and only
for events of the same connection:

• A Connection Establishment event precedes any Data Transfer
Completion events.

• All pending data transfer completion events that are completed
successfully should precede a Disconnect event.

• There is no order implied between pending Data Transfer
Completion events that are completed with an error and a
Disconnect event.

This ordering is guaranteed only if Provider supports merging of
connection and DTO completion events.

An Event Dispatcher can have zero or one CNO associated with it. Each
CNO can have zero or one OS Wait Agent Proxy associated with it. The
same CNO can be associated with any number of EVDs from zero to all
EVDs of a single IA instance.

An Event Dispatcher supports DTO and RMR Completions whose
notification are controlled by either local DAT_COMPLETION_
UNSIGNALLED_FLAG or remote DAT_COMPLETION_SOLICITED_
WAIT_FLAG of posted DTO or RMR, but not both. When Event
Dispatcher is used by an Endpoint that is configured for Notification
controlled completion, either locally or remotely via posted DTO/RMR,
then arrival of non-notification events does not effect the waiter. If an
Event Dispatcher supports DTO and RMR Completions whose notification
 Page 107

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
are controlled by either local DAT_COMPLETION_UNSIGNALLED_
FLAG or remote DAT_COMPLETION_SOLICITED_WAIT_FLAG of
posted DTO or RMR and the Event Dispatcher also supports non DTO
Completions event streams then an event arrival on any of these streams
will unblock a waiter if one exists.

An Event Dispatcher supports threshold value other than one if the Event
Dispatcher is not used by an Endpoint that is configured for Notification
control either local DAT_COMPLETION_UNSIGNALLED_FLAG or
remote DAT_COMPLETION_SOLICITED_WAIT_FLAG. Otherwise, an
attempt to wait with threshold value other then 1 results in immediate error
DAT_INVALID_STATE. If an Event Dispatcher supports DTO and RMR
Completions whose notification are controlled by either local DAT_
COMPLETION_UNSIGNALLED_FLAG or remote DAT_COMPLETION_
SOLICITED_WAIT_FLAG of posted DTO or RMR, and the Event
Dispatcher also supports non DTO Completions event streams, than an
event arrival on any of these streams counts toward threshold.

Events of all event streams but Request and Recv completions are always
Notification Events. The Notification vs. Non-Notification status of Request
and Recv Completion events are controlled by the Consumer via EP
attributes and posted Recv and Request completion_flags.

De-facto EVD is configured for either locally controlled Notification flag
(DAT_COMPLETION_UNSIGNALLED_FLAG), remotely controlled
Notification flag (DAT_COMPLETION_SOLICITED_WAIT_FLAG) or
threshold argument of dat_evd_wait.

When an Event Dispatcher has a blocked waiter, the following logic
applies:

1) The first notification event that arrives (if EVD is used for EP com-
pletion streams, the EP attribute for that completion stream must be
configured for notification events [DAT_COMPLETION_
UNSIGNALLED_FLAG or DAT_COMPLETION_SOLICITED_WAIT_
FLAG for Receive Completion Type for Receives; DAT_
COMPLETION_UNSIGNALLED_FLAG for Request Completion Type
for Send, RDMA Read, RDMA Write and RMR Bind]) unblocks the
waiter. The first event is delivered to the waiter.

2) An event whose arrival (if EVD is not used by Endpoints or used only
by EP completion streams that are configured for DAT_EVD_STATE_
CONFIG_THRESHOLD) reaches threshold number of events on the
EVD unblocks the waiter. The first event is delivered to the waiter.

3) If the timeout period expires without an event arrival that crosses
threshold, the total number of queued events must still be checked. If
the threshold is reached, the caller should be unblocked with DAT_
SUCCESS.

4) Even if specified and enabled, the CNO is never triggered by an
Event Dispatcher with a blocked waiter.
 Page 108

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

When an Event Dispatcher does not have a blocked waiter, the following
logic applies:

1) The notified status is sticky. Once signaled, the Event Dispatcher re-
mains signaled, allowing the next wait to unblock immediately. This is
a notification status, not a count. No matter how many notification
events are queued, the first unblock or dequeue clears the notifi-
cation status.

2) Events are queued, whether in an Event Stream-specific stream
(which can be a hardware resource) or by the Event Dispatcher itself.

3) If the Event Dispatcher is enabled and has a specified CNO, the CNO
is triggered with the Event Dispatcher’s handle.

4) If there are Consumer threads waiting on it, the CNO unblocks one of
them (which one is implementation-dependent) and passes the
handle for this or any other Event Dispatcher that has an event.

5) Whether or not the CNO unblocked a waiter, it then triggers the asso-
ciated OS Wait Proxy Agent (if there is one), passing the handle for
this or any other Event Dispatcher that has an event on its event
queue. Triggering an OS Wait Proxy Agent disassociates it from the
CNO. It must be rearmed by the Consumer for each use.
 Page 109

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Below is an EVD state transition diagram.

STATE: WAITED - The EVD was claimed by a waiter.

Action: dat_evd_clear_unwaitable - return DAT_SUCCESS, no change.
 Page 110

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Action: dat_evd_free - return DAT_INVALID_STATE, no change.

Action: dat_evd_wait - return DAT_INVALID_STATE, no change.

Action: dat_evd_dequeue - return DAT_INVALID_STATE, no change.

Action: E_INTR or similar (Unix or equivalent semantic)

• if threshold is reached
• deliver first Event to waiter
• set nmore
• return DAT_SUCCESS
• transfer to Waitable state.

• else threshold is not reached
• set nmore
• return DAT_INTERRUPTED_CALL
• transfer to Waitable state.

Action: timeout reached

• if threshold reached
• deliver first Event to waiter
• set nmore
• return DAT_SUCCESS
• transfer to Waitable state.

• else threshold is not reached
• set nmore
• return DAT_TIMEOUT_EXPIRED
• transfer to Waitable state.

Action: dat_evd_set_unwaitable

• return DAT_INVALID_STATE
• transfer to Unwaitable state.

Action: event arrival

• if ([DAT_EVD_STATE_CONFIG_THRESHOLD mode] AND
[threshold is reached]) OR (notification event) arrived
• deliver first Event to waiter
• set nmore
• return DAT_SUCCESS
• transfer to Waitable state

• else
• no change
 Page 111

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Comment: This was clarified by incorporating the entire behavior, whether
uDAPL, verb layer, or hardware. Internal divisions are not shown here.
Prior diagrams attempted a typical DAT/verb layer boundary.

STATE: UNWAITED (superstate for Waitable and Unwaitable)

Action: dat_evd_free - delete object.

Action: dat_evd_clear_unwaitable

• return DAT_SUCCESS
• transfer to Waitable state

Action: dat_evd_set_unwaitable

• return DAT_SUCCESS
• transfer to Unwaitable state

Action: dat_evd_dequeue

• if event available
• deliver first Event
• return DAT_SUCCESS

• otherwise
• return DAT_QUEUE_EMPTY

Action: event arrival

• if notification event, kick CNO if enabled and specified

Action: dat_evd_wait -- from Waitable

• if (no events available) OR ([DAT_EVD_STATE_CONFIG_
THRESHOLD mode] AND [threshold not reached] AND [Provider
chooses to make this check])
• transfer to Waited state

• otherwise
• deliver first Event
• set nmore
• return DAT_SUCCESS

Action dat_evd_wait -- from Unwaitable

• return DAT_INVALID_STATE
• no state change

It is up to the Consumer to dequeue events from the Event Dispatcher
after they are unblocked. Because there are might be events on the queue
of any of the Event Dispatchers, it is the Consumer’s responsibility to
check all the Event Dispatcher queues on which CNO was blocked.
 Page 112

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

There is a nondeterministic time span between an Event Dispatcher
triggering a CNO and the waiting uDAPL Consumer being unblocked.
Therefore, four Event Dispatchers triggering the same CNO in a short
period could result in anywhere from one to four uDAPL Consumers being
unblocked.

When a CNO is triggered before there is a waiter, it remembers that it was
triggered. When the next Consumer waits on the CNO, it is immediately
given the handle of an Event Dispatcher that has been notified, or any
other Event Dispatcher that has an event.

Note for Provider: To the extent that it is possible for the uDAPL Provider
to efficiently determine the true time ordering of events on different Event
Streams, it should preserve that order when dispatching events.

Note to Consumer: Consumers are responsible for synchronizing
dequeueing. When multiple Consumer threads are trying to dequeue an
event from the same Event Dispatcher, the order is not defined.

Note for Provider: Provider should not wake up the Consumer
prematurely when a threshold greater than 1 is requested.

Note for Consumer: Consumer should be able to tolerate eager behavior
from the Provider. Although the Provider should not wake up the
Consumer prematurely when threshold is set to a number greater than 1,
it is allowed not to block if there are events on the EVD, even if their
number is smaller than threshold. Consumer should use threshold for
performance improvement, not as a semantic guarantee.

Note to Consumer: Consumers can use a simple polling model using the
Event Dispatcher. This can be achieved when the Event Dispatcher
instance does not have any CNO associated with it. Consumers use
dequeue operation to get events from the Event Dispatcher. It is then up
to the Consumer to ensure that the event queue does not overflow.

An event queue overflow generates an asynchronous error on the IA
Event Dispatcher irrespective of the underlying RDMA Transport.
Overflow of the Asynchronous Error Event Dispatcher is a catastrophic
error; behavior of the Provider after that is undefined. The behavior of the
Provider after it posts a catastrophic error is undefined. The Provider can
consolidate multiple overflows of the same event queue into a single
notification. In general, the Provider is free to consolidate multiple error
notifications of the same type. Connections are not broken when an
associated Event Dispatcher for the connection local Endpoint has the
queue overflow condition. All cleanup of a queue overflow is left to the
Consumer.

A connection whose DTO/RMR completion posting caused EVD to
overflow will be broken. Consumer may not have any way to clean up the
overflown EVD queue that supports DTO and/or RMR Bind completion.
The EVD may no longer be usable at all, and access to events on it may
 Page 113

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
no longer be supported. The only thing that Consumers can do is to
destroy EVD, but first all connections that use it must be disconnected.

An EVD that only supports Connection Request, Connection events
and/or Software events can never be made unusable by an overflow
condition. Additionally, when an overflow would have occurred an EVD
would handle it as described below based on event stream type.

A Software Event that would have caused an overflow is rejected
synchronously. There is no overflow event, and the EVD remains
operational.

The overflow behavior of events on the extension event stream is defined
by the DAT extension document and DAT Provider. It is recommended that
extension events should not cause overflow of their EVD but if HW is
generating extension events that is not always possible. It is
recommended that Providers use DAT event stream without utilizing
extension event stream whenever possible. Consumers should read DAT
extension specification as Provider documentation to find out extension
event stream behavior.

if a Connection Request would have caused an EVD overflow, the
Provider simply rejects the peer's request on its own. There is no overflow
event, and the EVD remains operational.

Connection events from remote host are not rejected by the Provider.
These include remote peer and non-peer rejections and disconnects. The
requested action takes place. When connection events cannot be posted
due to the overflow of the EVD, an overflow event is generated, however
unlike DTO/RMR overflow events, the EVD is guaranteed to remain
operational. Events that should be posted to the overflown EVD are lost.
Once the space on the EVD queue becomes available the EVD performs
as normal non-overflown EVD.

Events that are posted to the overflown queue (by the Provider or
Consumer) are dropped by a Provider; they do not effect other events on
the event queue of the Event Dispatcher.

Note to Consumer: It is up to the Consumer to configure the Event
Dispatcher and dequeue events fast enough to avoid an overflow
condition.

The Consumer doesn’t know which memory to free and how to recover
resources because the Provider owns the DAT Object’s memory. dat_ia_
close must always be callable to do a shutdown and clean up resources.
The Provider must ensure that all resources are cleaned up regardless of
the overflow and other conditions.

The Consumer can only free the Event Dispatcher if it does not have any
associated Event Streams, except for the Software Event Stream, Event
Streams generated by the IA Object (asynchronous error Event
Dispatcher and possibly high availability event stream) and potentially
 Page 114

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

extension event stream, and if it does not have any waiting on it. When an
Event Dispatcher is freed, all events on its event queue are lost.

When the IA is closed either by a Consumer or abnormally, all waiters on
EVDs and CNOs are unblocked by the Provider. All waiters on all CNOs,
including the OS Wait Proxy Agents, are unblocked with the NULL handle
returns for an unblocking EVD. All direct waiters on all EVDs are also
unblocked and are returned with DAT_ABORT.

The following diagram outlines the Event Dispatcher “class” diagram.
 Page 115

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
 Page 116

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.3.1.1 UDAPL VERSUS KDAPL EVENT DISPATCHERS

Note to Provider: Both uDAPL and kDAPL Event Dispatchers are
serialization points that conceptually merge multiple Event Streams. They
differ in how those Events are delivered to the Consumer and in how the
Consumer is notified that Notifiable Events have been placed on the
Event Dispatcher’s queue.

uDAPL does not have any callback/UpCall capabilities. uDAPL Event
Dispatchers define a method allowing the Consumer to block waiting for
a threshold number of events on the queue, or for a notification event prior
to a timeout expiration. A CNO object can play a similar role for uDAPL as
an UpCall does for kDAPL, as notifiable events trigger a CNO and
optionally an OS Proxy Wait Agent when an associated set of EVDs do
not have waiters.

6.3.2 CONSUMER NOTIFICATION OBJECT

A CNO allows a Consumer to wait for a notification event on any of a large
number of Event Dispatchers. A CNO is a DAT Object, and as such it has
a scope of a single Interface Adapter. The association between a CNO
and an EVD is persistent and remains in place until the Consumer
explicitly changes it. However, a CNO can be configured to trigger an OS
Wait Proxy Agent whenever it is triggered. This allows a Consumer to wait
on a mix of events from multiple Interface Adapters and even non-DAT
Events. This must be done in an OS-specific manner. uDAPL only
specifies how the CNO triggers the OS-specific resource through the
proxy agent. How the consumer actually waits on it is OS-specific. The
invoking of the OS Wait Proxy Agent disassociates it from all CNOs it is
associated with. Consumers can associate the same or another agent
with a CNO using dat_cno_modify_agent. There can be, at most, one
agent associated with the CNO instance. When there is no associated
agent for the CNO, the query value for the Proxy agent is DAT_OS_
WAIT_PROXY_AGENT_NULL.

CNOs also support multiple concurrent waiters, even when the uDAPL
Provider is not otherwise thread-safe. This allows a small number of
“worker threads” to service a larger pool of Endpoints using one or more
Event Dispatchers. The unblocked waiters do not get an event, but an
EVD that has an event. This is in contrast to the EVD waiter, which gets
an event from EVD and is a single waiter on the EVD. If there is a direct
waiter on EVD, the EVD-associated CNO is not triggered until the waiter
is unblocked.

Each trigger of the CNO object unblocks one of the CNO waiters and the
OS Wait Proxy Agent if is associated with the CNO. DAT does not define
an algorithm that defines which of multiple waiters of the CNO object is
unblocked. This algorithm shall follow the convention of the platform.
 Page 117

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
The same CNO instance can be associated with multiple EVDs of the
same instance of the Interface Adapter. This allows Consumers to funnel
triggers from multiple EVDs to a single CNO.

6.3.2.1 DAT_CNO_CREATE

Synopsis: DAT_RETURN

dat_cno_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_OS_WAIT_PROXY_AGENT agent,

OUT DAT_CNO_HANDLE *cno_handle

)

Parameters:

Description: dat_cno_create creates a CNO instance. Upon creation, there are no
Event Dispatchers feeding it.

agent specifies the proxy agent, which is OS-dependent and which is
invoked when the CNO is triggered. After it is invoked, it is no longer
associated with the CNO. The value of DAT_OS_WAIT_PROXY_
AGENT_NULL specifies that no OS Wait Proxy Agent is associated with
the created CNO.

Upon creation, the CNO is not associated with any EVDs, has no waiters
and has, at most, one OS Wait Proxy Agent.

dat_cno_create is synchronous and thread safe.

Returns:

ia_handle: Handle for an instance of DAT IA.

gent: Pointer to an optional OS Wait Proxy Agent that is to be
invoked whenever CNO is invoked. DAT_OS_WAIT_PROXY_
AGENT_NULL indicates that there is no proxy agent.

cno_handle: Handle for the created instance of CNO.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is
invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid,
out of range, or a combination of
parameters was invalid. agent: is
invalid.
 Page 118

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.3.2.2 DAT_CNO_FREE

Synopsis: DAT_RETURN

dat_cno_free (

IN DAT_CNO_HANDLE cno_handle

)

Parameters:

Description: dat_cno_free destroys a specified instance of the CNO.

A CNO cannot be deleted while it is referenced by an Event Dispatcher or
while a thread is blocked on it.

It is illegal to use the destroyed handle in any subsequent operation.

dat_cno_free is synchronous and non-thread safe.

Returns:

6.3.2.2.1 USAGE

If there is a thread blocked in dat_cno_wait, the Consumer can do the
following steps to unblock the waiter:

• Create a temporary EVD that accepts software events. It can be
created in advance.

• For a CNO with the waiter, attach that EVD to the CNO and post the
software event on the EVD.

• This unblocks the CNO.
• Repeat for other CNOs that have blocked waiters.
• Destroy the temporary EVD after all CNOs are destroyed and the

EVD is no longer needed.
6.3.2.2.2 RATIONALE

6.3.2.2.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as

cno_handle: Handle for an instance of the CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cno_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state. CNO
is in use by an EVD instance or
there is a thread blocked on it.
 Page 119

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.3.2.3 DAT_CNO_WAIT

Synopsis: DAT_RETURN

dat_cno_wait (

IN DAT_CNO_HANDLE cno_handle,

IN DAT_TIMEOUT timeout,

OUT DAT_EVD_HANDLE *evd_handle

)

Parameters:

Description: dat_cno_wait allows the Consumer to wait for notification events from a
set of Event Dispatchers all from the same Interface Adapter. The
Consumer blocks until notified or the timeout period expires.

It is important to remember that an Event Dispatcher that is disabled or in
the “Waited” state does not deliver notifications. A uDAPL Consumer
waiting directly upon an Event Dispatcher preempts the CNO.

All providers must support multiple waiters on a CNO, even if they are
otherwise not considered “thread safe.”

The consumer can optionally specify a timeout, after which it is unblocked
even if there are no notification events. On a timeout, evd is explicitly set
to a NULL handle.

The returned evd handle is only a hint. Another Consumer can reap the
Event before this Consumer can get around to checking the Event
Dispatcher. Additionally, other Event Dispatchers feeding this CNO might
have been notified. The Consumer is responsible for ensuring that all
EVDs feeding this CNO are polled regardless of whether they are
identified as the immediate cause of the CNO unblocking.

All waiters on the CNO, including the OS Wait Proxy Agent if it is
associated with the CNO, are unblocked with the NULL handle returns for
an unblocking EVD evd_handle when the IA instance is destroyed or when
all EVDs the CNO is associated with are freed.

dat_cno_wait is blocking and thread safe.

cno_handle: Handle for an instance of CNO.

timeout: The duration to wait for a notification. The value DAT_
TIMEOUT_INFINITE can be used to wait indefinitely.

evd_handle: Handle for an instance of EVD.
 Page 120

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Returns:

6.3.2.3.1 USAGE

Consumers can unblock a waiting thread by posting dat_evd_post_se to
an EVD assosicated with CNO. This platform-independent method
ensures that there is a notification event on the EVD queue. If there is a
race between dat_cno_wait and dat_evd_post_se since there is a
notification event the waiter will either be unblocked or it would not block
at all. Consumer can either have a separate EVD feeding the CNO which
support SE event stream or have an EVD on which it expect event to be
configured so it can support SE event stream.

Consumer can use Platform-specific methods for unblocking a waiter that
may result in DAT_INTERRUPTED_CALL. See the OS specific notes for
more details (see “Operating System Specific Notes” on page 303).

6.3.2.3.2 RATIONALE

6.3.2.3.3 MODEL IMPLICATIONS

6.3.2.4 DAT_CNO_MODIFY_AGENT

Synopsis: DAT_RETURN

dat_cno_modify_agent (

IN DAT_CNO_HANDLE cno_handle,

IN DAT_OS_WAIT_PROXY_AGENT agent

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cno_handle is
invalid.

DAT_QUEUE_EMPTY The operation timed out without a
notification.

DAT_INVALID_PARAMETER One of the parameters was invalid
or out of range, or a combination of
parameters was invalid. timeout is
invalid.

DAT_INTERRUPTED_CALL [Unix only] The operation was
interrupted by a signal.

cno_handle: Handle for an instance of CNO.

agent: Pointer to an optional OS Wait Proxy Agent to invoke
whenever CNO is invoked. DAT_OS_WAIT_PROXY_
AGENT_NULL indicates that there is no proxy agent.
 Page 121

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_cno_modify_agent modifies the OS Wait Proxy Agent associated with
a CNO. If non-null, any trigger received by the CNO is also passed to the
OS Wait Proxy Agent. This is in addition to any local delivery through the
CNO. The Consumer can pass the value of DAT_OS_WAIT_PROXY_
AGENT_NULL to disassociate the current Proxy agent from the CNO.

dat_cno_modify_agent is synchronous. Its thread safety is Provider-
dependent.

Returns:

6.3.2.5 DAT_CNO_QUERY

Synopsis: DAT_RETURN

dat_cno_query (

IN DAT_CNO_HANDLE cno_handle,

IN DAT_CNO_PARAM_MASK cno_param_mask,

OUT DAT_CNO_PARAM *cno_param

)

Parameters:

Description: dat_cno_query provides the Consumer parameters of the CNO. The
Consumer passes in a pointer to the Consumer-allocated structures for
CNO parameters that the Provider fills.

cno_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for cno_param_mask requested
parameters. The Provider can return values for any other parameters.

The return value of DAT_OS_WAIT_PROXY_AGENT_NULL indicates
that there are no Proxy Agent associated with the CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cno_handle is
invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid,
out of range, or a combination of
parameters was invalid. agent: is
invalid.

cno_handle: Handle for the created instance of the Consumer
Notification Object.

cno_param_mask: Mask for CNO parameters.

cno_param: Pointer to a Consumer-allocated structure that the
Provider fills with CNO parameters.
 Page 122

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_cno_query is synchronous. Its thread safety is Provider-dependent.

Returns:

6.3.2.5.1 USAGE

6.3.2.5.2 RATIONALE

6.3.2.5.3 MODEL IMPLICATIONS

6.3.3 OS WAIT PROXY AGENT

Creation of OS Wait Proxy Agents is Host OS- and/or Provider-
dependent. The only DAT-defined operation on OS Wait Proxy Agents is
that they can be triggered with a DAT_EVD_HANDLE by CNOs. Specific
types of OS Wait Proxy Agents can have additional methods for waiting
on them, or they can trigger an external OS-specific semaphore, message
queue, or file descriptor instead.

OS Wait Proxy Agents are not DAT Objects. A consumer can use one
created by one Provider when interfacing with another. However, each
Provider is required to implement at least one class of OS Wait Proxy
Agent to interface with a specific OS resource that will be defined by the
DAT Collaborative for each OS. For any OS that has the equivalent of a
Unix file descriptor, that mechanism is selected by default.

6.3.4 EVENT DISPATCHER

6.3.4.1 DAT_EVD_CREATE

Synopsis: DAT_RETURN

dat_evd_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_COUNT evd_min_qlen,

IN DAT_CNO_HANDLE cno_handle,

IN DAT_EVD_FLAGS evd_flags,

OUT DAT_EVD_HANDLE *evd_handle

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; cno_param_
mask is invalid.

DAT_INVALID_HANDLE Invalid DAT handle; cno_handle is
invalid.

ia_handle: Handle for an instance of DAT IA.

evd_min_qlen: Minimum size of the queue for events.
 Page 123

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_evd_create creates an instance of Event Dispatcher. Upon creation, it
does not have any Event Streams feeding events to it.

evd_min_qlen defines the size of the event queue that the Consumer
requested. The Provider is required to provide a queue size of at least
evd_min_qlen, but is free to provide a larger queue size (or provide
dynamic queue enlargement when needed). The Consumer can

cno_handle: Handle of the CNO to be triggered when there are
notification Events for this Event Dispatcher and it is
enabled and not directly wait blocked. The value of DAT_
HANDLE_NULL specifies no CNO.

•

evd_flags: Flag for Event Dispatcher (See Appendix A.4). Default value
is DAT_EVD_DEFAULT_FLAG. Table 3 lists the EVD flag
definitions.

evd_handle: Handle for an instance of Event Dispatcher.

Table 3 EVD Flag Definitions

Event Stream Definition Description

Software DAT_EVD_SOFTWARE_FLAG Consumer can post software events to the EVD
using dat_evd_post_SE.

Connection Requests DAT_EVD_CR_FLAG The EVD can be associated with the Public or
Private Service Point to get connection requests.

Data Transfer Operations DAT_EVD_DTO_FLAG The EVD can be used for DTOs (recv_evd,
request_evd) of any Endpoints.

Connections DAT_EVD_CONNECTION_FLAG The EVD can be used as connect_evd of any
Endpoints.

RMR Bind DAT_EVD_RMR_BIND_FLAG The EVD can be used as rmr_bind_evd of any
Endpoints.

Asynchronous events DAT_EVD_ASYNC_FLAG The EVD can be used for the Interface Adapter
in dat_ia_open for async_evd.

Extension events DAT_EVD_EXT_FLAG The EVD can be used for Extension Objects.

All Provider Streams DAT_EVD_DEFAULT_FLAG The EVD can be used for any DAT objects
except Software and Extension event streams.
This is the union of DAT_EVD_CR_FLAG, DAT_
EVD_DTO_FLAG, DAT_EVD_CONNECTION_
FLAG, DAT_EVD_ASYNC_FLAG and DAT_
EVD_RMR_BIND_FLAG.
 Page 124

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

determine the actual queue size by querying the created Event Dispatcher
instance.

Specifying a cno_handle allows the Consumer to consolidate notifications
from multiple Event Dispatchers from the same Interface Adapter to a
single CNO. This can reduce the number of distinct waiting threads
required for an application. Through the CNO, an OS Wait Proxy Agent
can be used to enable waiting for notification events across multiple
Interface Adapters or even waiting for non-DAT events.

evd_flags allows Consumers to specify what Event Streams can feed this
EVD. Only a combination of merged event stream types supported by the
Provider as specified by the evd_stream_merging_supported Provider
attribute are allowed. A special constant DAT_EVD_DEFAULT_FLAG is
defined that allows Consumers to use it for any Provider Event Streams
but not for Consumer software events and extension events.

By default, the created EVD is enabled and waitable.

dat_evd_create is synchronous and thread safe.

Returns:

6.3.4.1.1 USAGE

Performance of dat_evd_wait may depend on the value of evd_flags.
Consult your vendor for the optimization guidance.

For example, an EVD dedicated to DTO completions may have a better
performance than EVD used for multiple event stream time. For example,
a request_evd value of DAT_EVD_DTO_FLAG | DAT_EVD_RMR_BIND_
FLAG or DAT_EVD_DEFAULT_FLAG & ~(DAT_EVD_CR_FLAG | DAT_
EVD_CONNECTION_FLAG | DAT_EVD_ASYNC_FLAG) can produce
higher performance for EVD operations such as dat_evd_dequeue and
dat_evd_wait.

6.3.4.1.2 RATIONALE

6.3.4.1.3 MODEL IMPLICATIONS

Note to Consumer: The Consumer should check the Provider attribute
for EVD stream merging support before creating an EVD that merges
multiple event stream types. Because not all combinations of Event
streams feeding the same EVD can be supported by the Provider, the

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_PARAMETER Invalid or out-of-range parameter or
combination of parameters.
 Page 125

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Consumer should not rely on the ability to merge event streams of different
types, except for DTO and RMR completions.

If Consumers require that an EVD be able to handle all event stream
types, they should procure the Provider that provides this capability.

6.3.4.2 DAT_EVD_FREE

Synopsis: DAT_RETURN

dat_evd_free (

IN DAT_EVD_HANDLE evd_handle

)

Parameters:

Description: dat_evd_free destroys a specified instance of the Event Dispatcher.

All events on the queue of the specified Event Dispatcher are lost. The
destruction of the Event Dispatcher instance does not have any effect on
any DAT Objects that originated an Event Stream that had fed events to
the Event Dispatcher instance. There should be no event streams feeding
the Event Dispatcher except Software and Asynchronous errors event
streams and no threads blocked on the Event Dispatcher when the EVD
is being closed as at the time when it was created.

It is illegal to use the destroyed handle in any subsequent operation.

dat_evd_free is synchronous and non-thread safe.

Returns:

6.3.4.2.1 USAGE

Consumers are advised to destroy all Objects that originate Event
Streams that feed an instance of the Event Dispatcher before destroying
it. An exception to this rule is Event Dispatchers of an IA.

Freeing an IA automatically destroys all Objects associated with it directly
and indirectly, including Event Dispatchers.

The Software event stream is destroyed when the EVD it feeds is
destroyed.

evd_handle: Handle for an instance of the Event Dispatcher.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_INVALID_STATE Invalid parameter. There are Event
Streams associated with the Event
Dispatcher feeding it.
 Page 126

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The extension event stream is destroyed when the extension object that
feeds it is destroyed.

6.3.4.2.2 RATIONALE

6.3.4.2.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.3.4.3 DAT_EVD_QUERY

Synopsis: DAT_RETURN

dat_evd_query (

IN DAT_EVD_HANDLE evd_handle,

IN DAT_EVD_PARAM_MASK evd_param_mask,

OUT DAT_EVD_PARAM *evd_param

)

Parameters:

Description: dat_evd_query provides to the Consumer parameters of the Event
Dispatcher, including the state of the EVD (enabled/disabled). The
Consumer passes in a pointer to the Consumer-allocated structures for
EVD parameters that the Provider fills.

evd_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for evd_param_mask requested
parameters. The Provider can return values for any of the other
parameters.

dat_evd_query is synchronous. Its thread safety is Provider-dependent.

Returns:

evd_handle: Handle for an instance of Event Dispatcher.

evd_param_mask: Mask for EVD parameters.

evd_param: Pointer to a Consumer-allocated structure that the
Provider fills for Consumer-requested parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameters; evd_param_
mask is invalid.
 Page 127

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.3.4.3.1 USAGE

6.3.4.3.2 RATIONALE

6.3.4.3.3 MODEL IMPLICATIONS

6.3.4.4 DAT_EVD_MODIFY_CNO

Synopsis: DAT_RETURN

dat_evd_modify_cno (

IN DAT_EVD_HANDLE evd_handle,

IN DAT_CNO_HANDLE cno_handle

)

Parameters:

Description: dat_evd_modify_cno changes the associated CNO for the Event
Dispatcher.

A Consumer can specify the value of DAT_HANDLE_NULL for cno_
handle to associate not CNO with the Event Dispatcher instance.

Upon completion of the dat_evd_modify_cno operation, the passed IN
new CNO is used for notification. During the operation, an event arrival
can be delivered to the old or new CNO. If Notification is generated by
EVD, it is delivered to the new or old CNO.

If the EVD is enabled at the time dat_evd_modify_cno is called, the
Consumer must be prepared to collect a notification event on the EVD's
old CNO as well as the new one. Checking immediately prior to calling
dat_evd_modify_cno is not adequate. A notification could have been
generated after the prior check and before the completion of the change.

The Consumer can avoid the risk of missed notifications either by
temporarily disabling the EVD, or by checking the prior CNO after invoking
this operation. The Consumer can disable EVD before a dat_evd_modify_
cno call and enable it afterwards. This ensures that any notifications from
the EVD are delivered to the new CNO only.

Note that even if this routine is used to disassociate a CNO from the EVD,
events arriving on this EVD might cause waiters on that CNO to awaken
after returning from this routine because of unblocking a CNO waiter
already “in progress” at the time this routine is called. If this is the case,
the events causing that unblocking are present on the EVD upon return
from the dat_evd_modify_cno call and can be dequeued at that time.

evd_handle: Handle for an instance of the Event Dispatcher.

cno_handle: Handle for a CNO. The value of DAT_NULL_HANDLE
specifies no CNO.
 Page 128

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_evd_modify_cno is synchronous. Its thread safety is Provider-
dependent.

Returns:

6.3.4.4.1 USAGE

6.3.4.4.2 RATIONALE

6.3.4.4.3 MODEL IMPLICATIONS

6.3.4.5 DAT_EVD_ENABLE

Synopsis: DAT_RETURN

dat_evd_enable(

IN DAT_EVD_HANDLE evd_handle

)

Parameters:

Description: dat_evd_enable enables the Event Dispatcher so that the arrival of an
event can trigger the associated CNO. The enabling and disabling EVD
has no effect on direct waiters on the EVD. However, direct waiters
effectively take ownership of the EVD, so that the specified CNO is not
triggered even if is enabled.

If the Event Dispatcher is enabled already, this operation is no-op.

dat_evd_enable is synchronous and thread safe.

Returns:

6.3.4.6 DAT_EVD_DISABLE

Synopsis: DAT_RETURN

dat_evd_disable(

IN DAT_EVD_HANDLE evd_handle

)

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle.

evd_handle: Handle for an instance of Event Dispatcher.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.
 Page 129

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Parameters:

Description: dat_evd_disable disables the Event Dispatcher so that the arrival of an
event does not affect the associated CNO.

If the Event Dispatcher is already disabled, this operation is no-op.

Note that events arriving on this EVD might cause waiters on the
associated CNO to be awakened after the return of this routine because
an unblocking a CNO waiter is already “in progress” at the time this routine
is called or returned.

dat_evd_disable is synchronous and thread safe.

Returns:

6.3.4.7 DAT_EVD_SET_UNWAITABLE

Synopsis: DAT_RETURN

dat_evd_set_unwaitable(

IN DAT_EVD_HANDLE evd_handle

)

Parameters:

Description: dat_evd_set_unwaitable transitions the Event Dispatcher into an
unwaitable state. In this state, calls to dat_evd_wait return synchronously
with a DAT_INVALID_STATE error, and threads already blocked in dat_
evd_wait are awakened and return with a DAT_INVALID_STATE error
without any further action by the Consumer. The actual state of the Event
Dispatcher is accessible through dat_evd_query and is DAT_EVD_
UNWAITABLE after the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events
arriving on the EVD after it is set unwaitable still trigger the CNO (if
appropriate), and can be retrieved with dat_evd_dequeue. Because
events can arrive normally on the EVD, the EVD might overflow; the
Consumer is expected to protect against this possibility.

dat_evd_set_unwaitable is synchronous and thread-safe.

evd_handle: Handle for an instance of Event Dispatcher.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

evd_handle: Handle for an instance of Event Dispatcher.
 Page 130

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Returns:

6.3.4.8 DAT_EVD_CLEAR_UNWAITABLE

Synopsis: DAT_RETURN

dat_evd_clear_unwaitable(

IN DAT_EVD_HANDLE evd_handle

)

Parameters:

Description: dat_evd_clear_unwaitable transitions the Event Dispatcher into a
waitable state. In this state, calls to dat_evd_wait are permitted on the
EVD. The actual state of the Event Dispatcher is accessible through dat_
evd_query and is DAT_EVD_WAITABLE after the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events
arriving on the EVD after it is set waitable still trigger the CNO (if
appropriate), and can be retrieved with dat_evd_dequeue.

dat_evd_clear_unwaitable is synchronous and thread-safe.

Returns:

6.3.4.9 DAT_EVD_RESIZE

Synopsis: DAT_RETURN

dat_evd_resize(

IN DAT_EVD_HANDLE evd_handle,

IN DAT_COUNT evd_min_qlen

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

evd_handle: Handle for an instance of Event Dispatcher.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

evd_handle: Handle for an instance of Event Dispatcher.

evd_min_qlen: New number of events the Event Dispatcher event queue
must hold.
 Page 131

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_evd_resize modifies the size of the event queue of Event Dispatcher.

Resizing of Event Dispatcher event queue should not cause any incoming
or current events on the event queue to be lost. If the number of entries on
the event queue is larger then the requested evd_min_qlen, the operation
can return DAT_INVALID_STATE and not change an instance of Event
Dispatcher.

dat_evd_resize is synchronous. Its thread safety is Provider-dependent.

Returns:

6.3.4.9.1 USAGE

This operation is useful when the potential number of events that could be
placed on the event queue changes dynamically.

6.3.4.9.2 RATIONALE

6.3.4.9.3 MODEL IMPLICATIONS

6.3.4.10 DAT_EVD_WAIT

Synopsis: DAT_RETURN

dat_evd_wait(

IN DAT_EVD_HANDLE evd_handle,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT threshold,

OUT DAT_EVENT *event,

OUT DAT_COUNT *nmore

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; evd_min_qlen is
invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_STATE Invalid parameter. The number of
entries on the event queue of the
Event Dispatcher exceeds the
requested event queue length.

evd_handle: Handle for an instance of the Event Dispatcher.

timeout: The duration of time, in microseconds, that the Consumer is
willing to wait for the event.
 Page 132

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_evd_wait removes the first event from the Event Dispatcher event
queue and fills the Consumer-allocated event structure with event data.
The first element in this structure provides the type of the event; the rest
provides the event type-specific parameters. The Consumer should
allocate an event structure big enough to hold any event that the Event
Dispatcher can deliver.

For all events, the Provider fills the dat_event that the Consumer
allocates. Therefore, for all events, all fields of dat_event are OUT from
the Consumer point of view. For DAT_CONNECTION_REQUEST_
EVENT, the Provider creates a Connection Request whose cr_handle is
returned to the Consumer in DAT_CR_ARRIVAL_EVENT_DATA. That
object is destroyed by the Provider as part of dat_cr_accept, dat_cr_
reject, or dat_cr_handoff. The Consumer should not use cr_handle or any
of its parameters, including private_data, after one of these operations
destroys the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of
connection establishment, the Provider returns the pointer for private_
data and the private_data_size. For the Passive side, DAT_
CONNECTION_EVENT_ESTABLISHED event private_data is not
defined and private_data_size returns zero. The Provider is responsible
for the memory allocation and deallocation for private_data. The private_
data is valid until the Active side Consumer destroys the connected
Endpoint (dat_ep_free), or transitions the Endpoint into Unconnected
state so it is ready for the next connection. So, while the Endpoint is in
Connected, Disconnect Pending, or Disconnected state, the private_data
of DAT_CONNECTION_REQUEST_EVENT is still valid for Active side
Consumers.

Note to Provider: Provider must pass to the Consumer the entire Private
Data that the remote Consumer provided for dat_ep_connect, dat_ep_
dup_connect, and dat_cr_accept. If the Consumer provides more data
than the Provider and Transport can support (larger than IA Attribute of
max_private_data_size), DAT_INVALID_PARAMETER is returned for
that operation.

Note to Provider: Provider shall adhere to the memory allocation
requirements stated in 5.1 Local Resource Model on page 13.

threshold: The number of events that should be on the EVD queue
before the operation should return with DAT_SUCCESS. The
threshold must be at least 1.

event: Pointer to the Consumer-allocated structure that the Provider
fills with the event data.

nmore: The snapshot of the queue size at the time of the operation
return.
 Page 133

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
A Consumer that blocks doing a dat_evd_wait on an Event Dispatcher
effectively takes exclusive ownership of that Event Dispatcher. Any other
dequeue operation (dat_evd_wait or dat_evd_dequeue) on the Event
Dispatcher is rejected with a DAT_INVALID_STATE error code.

The CNO associated with the evd_handle is not triggered upon event
arrival if there is a Consumer blocked on dat_evd_wait on this Event
Dispatcher.

The timeout allows the Consumer to restrict the amount of time it is
blocked waiting for the event arrival. The value of DAT_TIMEOUT_
INFINITE indicates that the Consumer waits indefinitely for an event
arrival. Consumers should use extreme caution in using this value.

When timeout value is reached and the number of events on the EVD
queue is below the threshold value, the operation fails and returns DAT_
TIMEOUT_EXPIRED. In this case, no event is dequeued from the EVD
and the return value for the event argument is undefined. However, an
nmore value is returned that specifies the snapshot of the number of the
events on the EVD queue that is returned.

If timeout=0 and if there are no threshold number of events available then
DAT_TIMEOUT_EXPIRED is returned with nmore specified and event not
defined. If timeout=0 and there are threshold number of events then DAT_
SUCCESS is returned with both nmore and event defined. If timeout=0 the
operation does not block regardless of the platform behavior for
timeout=0.

The threshold allows the Consumer to wait for a requested number of
event arrivals prior to waking the Consumer. If the value of the threshold
is larger than the Event Dispatcher queue length, the operation fails with
the return DAT_INVALID_PARAMETER. If a non-positive value is
specified for threshold, the operation fails and returns DAT_INVALID_
PARAMETER.

If EVD is used by an Endpoint for a DTO completion stream that is
configured for a Consumer-controlled event Notification (DAT_
COMPLETION_UNSIGNALLED_FLAG or DAT_COMPLETION_
SOLICITED_WAIT_FLAG for Receive Completion Type for Receives;
DAT_COMPLETION_UNSIGNALLED_FLAG for Request Completion
Type for Send, RDMA Read, RDMA Write and RMR Bind), the
threshold value must be 1. An attempt to specify some other value for
threshold for this case results in DAT_INVALID_STATE.

The returned value of nmore indicates the number of events left on the
Event Dispatcher queue after the dat_evd_wait returns. If the operation
return value is DAT_SUCCESS, the nmore value is at least the value of
(threshold -1). Notice that nmore is only a snapshot and the number of
events can be changed by the time the Consumer tries to dequeue events
via dat_evd_wait with timeout of zero or via dat_evd_dequeue.
 Page 134

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

For returns other than DAT_SUCCESS, DAT_TIMEOUT_EXPIRED, and
DAT_INTERRUPTED_CALL, the returned value of nmore is undefined.

The returned event that was posted from an Event Stream guarantees
Consumers that all events that were posted from the same Event Stream
prior to the returned event were already returned to a Consumer directly
through a dat_evd_dequeue or dat_evd_wait operation.

If the return value is neither DAT_SUCCESS nor DAT_TIMEOUT_
EXPIRED, returned values of nmore and event are undefined. If the return
value is DAT_TIMEOUT_EXPIRED, the return value of event is
undefined, but the return value of nmore is defined. If the return value is
DAT_SUCCESS, the return values of nmore and event are defined.

If this routine is called on an EVD in an unwaitable state, or if dat_evd_
set_unwaitable is called on an EVD on which a thread is blocked in this
routine, the routine returns with DAT_INVALID_STATE.

This operation is blocking and thread-safe. The ordering of events
dequeued by overlapping calls to dat_evd_wait or dat_evd_dequeue is
not specified.

Returns:

6.3.4.10.1 USAGE

Consumers should be cautioned against using threshold combined with
infinite timeout.
Consumers should not mix different models for control of unblocking a
waiter. If the Consumer uses Notification Suppression or Solicited Wait to
control the Notification events for unblocking a waiter, the threshold must
be set to 1. If the Consumer uses threshold to control when a waiter is

DAT_SUCCESS The operation was successful. An
event was returned to a Consumer.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; timeout or
threshold is invalid. For example,
threshold is larger than the EVD’s
evd_min_qlen.

DAT_ABORT The operation was aborted because
IA was closed.

DAT_INVALID_STATE One of the parameters was invalid
for this operation. There is already a
waiter on the EVD, or the EVD is in
an unwaitable state.

DAT_TIMEOUT_EXPIRED The operation timed out.

DAT_INTERRUPTED_CALL [Unix only] The operation was
interrupted by a signal.
 Page 135

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
unblocked, DAT_COMPLETION_UNSIGNALLED_FLAG locally and
DAT_COMPLETION_SOLICITED_WAIT remotely shall not be used. By
default, all completions are Notification events.

Consumers can unblock a waiting thread by posting dat_evd_post_se to
the EVD. This platform-independent method ensures that there is a
notification event on the EVD queue. If there is a race between dat_evd_
wait and dat_evd_post_se, since there is a notification event on the EVD,
the waiter will either be unblocked or it would not block at all. This is
subject to threshold value specified. In the worst case, Consumer may
need to post threshold number of SEs. The EVD must be configured to
support SE event stream.

Consumer can use Platform-specific methods for unblocking a waiter that
may result in DAT_INTERRUPTED_CALL. See the OS specific notes for
more details (see “Operating System Specific Notes” on page 303).

6.3.4.10.2 RATIONALE

6.3.4.10.3 MODEL IMPLICATIONS

Providers shall check for the number of events on the queue before
returning the DAT_TIMEOUT_EXPIRED error. If the number of events on
the EVD queue is equal to or larger than the specified threshold value, the
operation must complete successfully.

Note for Provider: Provider should not wake up the Consumer
prematurely when a threshold greater than 1 is used.

Note for Consumer: Consumer should be able to tolerate eager behavior
from the Provider. Although the Provider should not wake up prematurely
when threshold is set to a number greater than 1, it is allowed not to block
if there are events on the EVD, even if their number is smaller than
threshold. Consumers should use threshold for performance
improvement, not as a semantic guarantee.

6.3.4.11 DAT_EVD_DEQUEUE

This operation is almost equivalent to dat_evd_wait with a timeout of 0 and
a threshold of 1, except for error semantics and returns.

Synopsis: DAT_RETURN

dat_evd_dequeue(

IN DAT_EVD_HANDLE evd_handle,

OUT DAT_EVENT *event

)

Parameters:
evd_handle: Handle for an instance of the Event Dispatcher.
 Page 136

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_evd_dequeue removes the first event from the Event Dispatcher
event queue and fills the Consumer allocated event structure with event
data. The first element in this structure provides the type of the event; the
rest provides the event-type-specific parameters. The Consumer should
allocate an event structure big enough to hold any event that the Event
Dispatcher can deliver.

For all events the Provider fills the dat_event that the Consumer allocates.
So for all events, all fields of dat_event are OUT from the Consumer point
of view. For DAT_CONNECTION_REQUEST_EVENT, the Provider
creates a Connection Request whose cr_handle is returned to the
Consumer in DAT_CR_ARRIVAL_EVENT_DATA. That object is
destroyed by the Provider as part of dat_cr_accept, dat_cr_reject, or dat_
cr_handoff. The Consumer should not use cr_handle or any of its
parameters, including private_data, after one of these operations destroys
the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of
connection establishment, the Provider returns the pointer for private_
data and the private_data_size. For the Passive side, DAT_
CONNECTION_EVENT_ESTABLISHED event private_data is not
defined and private_data_size returns zero. The Provider is responsible
for the memory allocation and deallocation for private_data. The private_
data is valid until the Active side Consumer destroys the connected
Endpoint (dat_ep_free), or transitions the Endpoint into Unconnected
state so it is ready for the next connection. So while the Endpoint is in
Connected, Disconnect Pending, or Disconnected state, the private_data
of DAT_CONNECTION_REQUEST_EVENT is still valid for Active side
Consumers.

Note to Provider: Provider must pass to the Consumer the entire Private
Data that the remote Consumer provided for dat_ep_connect, dat_ep_
dup_connect, and dat_cr_accept. If the Consumer provides more data
than the Provider and Transport can support (larger than the IA Attribute
of max_private_data_size), DAT_INVALID_PARAMETER is returned for
that operation.

Note to Provider: Provider shall adhere to the memory allocation
requirements stated in 5.1 Local Resource Model on page 13.

The returned event that was posted from an Event Stream guarantees
Consumers that all events that were posted from the same Event Stream
prior to the returned event were already returned to a Consumer directly
through a dat_evd_dequeue or dat_evd_wait operation.

event: Pointer to the Consumer-allocated structure that Provider fills
with the event data.
 Page 137

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
This operation is nonblocking, synchronous, and thread-safe. The
ordering of events dequeued by overlapping calls to dat_evd_wait or dat_
evd_dequeue is not specified.

Returns:

6.3.4.11.1 USAGE

No matter how many contexts attempt to dequeue from an Event
Dispatcher, each event is delivered exactly once. However, which
Consumer receives which event is not defined. The Provider is not
obligated to provide the first caller the first event unless it is the only caller.
The Provider is not obligated to ensure that the caller receiving the first
event executes earlier than contexts receiving later events.

Preservation of event ordering within an Event Stream is an important
feature of the DAT Event Model. Consumers are cautioned that
overlapping or concurrent calls to dat_evd_dequeue from multiple
contexts can undermine this ordering information. After multiple contexts
are involved, the Provider can only guarantee the order that it delivers
events into the EVD. The Provider cannot guarantee that they are
processed in the correct order.

Although calling dat_evd_dequeue does not cause a context switch, the
Provider is under no obligation to prevent one. A context could
successfully complete a dequeue, and then reach the end of its timeslice,
before returning control to the Consumer code. Meanwhile, a context
receiving a later event could be executing.

The Event ordering is preserved when dequeueing is serialized. Potential
Consumer serialization methods include, but are not limited to, doing all
dequeueing from a single context or protecting dequeueing via lock or
semaphore.

DAT_SUCCESS The operation was successful. An
event was returned to a Consumer.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_QUEUE_EMPTY There are no entries on the Event
Dispatcher queue.

DAT_INVALID_STATE One of the parameters was invalid
for this operation. There is already a
waiter on the EVD.
 Page 138

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.3.4.11.2 RATIONALE

6.3.4.11.3 MODEL IMPLICATIONS

6.3.4.12 DAT_EVD_POST_SE

Synopsis: DAT_RETURN

dat_evd_post_se(

IN DAT_EVD_HANDLE evd_handle,

IN const DAT_EVENT *event

)

Parameters:

Description: dat_evd_post_se post Software event to the Event Dispatcher event
queue. This is analogous to event arrival on the Event Dispatcher
software Event Stream. The event that the Consumer provides shall
adhere to the event format as defined in Appendix A.4. The first element
in the event provides the type of the event (DAT_SOFTWARE_EVENT);
the rest provides the event-type-specific parameters. These parameters
are opaque to a Provider. Allocation and release of the memory
referenced by the event pointer in a software event are the Consumer's
responsibility.

There is no ordering between events from different Event Streams. All the
synchronization issues between multiple Consumer contexts trying to
post events to an Event Dispatcher instance simultaneously are left to a
Consumer.

If the event queue is full, the operation is completed unsuccessfully and
returns DAT_QUEUE_FULL. The event is not queued. The queue
overflow condition does takes place and, therefore, the asynchronous
Event Dispatcher is not effected.

dat_evd_post_se is synchronous. Its thread safety is Provider-dependent.

Returns:

evd_handle: Handle for an instance of the Event Dispatcher.

event: A pointer to a Consumer created Software Event.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; event is invalid.

DAT_QUEUE_FULL The Event Dispatcher queue is full.
 Page 139

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.3.4.12.1 USAGE

6.3.4.12.2 RATIONALE

6.3.4.12.3 MODEL IMPLICATIONS

6.4 CONNECTION MANAGEMENT

uDAPL supports a client-server model for Connection establishment.

An active side (connection initiator) issues a request for a connection on a
local Endpoint to a remote side. The remote side is identified by an IA
Address and Connection Qualifier, or by IA Address that includes IP
Address, port and IP protocol number.

A passive side (Connection Acceptor) creates a Service Point on a local
IA with a specific Connection Qualifier, or by IA Address that includes IP
Address, port and IP protocol number to listen for incoming Connection
Requests.

6.4.1 INTERFACE ADAPTER ADDRESS

The Interface Adapter Address names an Interface Adapter, local or
remote, that is used for connection management and Name Service. The
format of the dat_ia_address_ptr follows the normal sockets programming
practice of struct sockaddr *. DAT supports both IPv4 and IPv6 address
families.

Allocation and initialization of DAT IA address structures must follow
normal sockets programming procedures. The underlying type of the DAT
IA address is the native struct sockaddr for each target operating system.
In all cases, storage appropriate for the address family in use by the target
Provider must be allocated.

For instance, when IPv6 addressing is in use, this should be allocated as
struct sockaddr_net6. The sockaddr sa_family and, if present, sa_len
fields must be initialized appropriately, as well as the address information.

When passed across the DAPL API, this storage is cast to the DAT_IA_
ADDRESS_PTR type. It is the responsibility of the callee to verify that the
sockaddr contains valid data for the requested operation. It is always the
responsibility of the caller to manage the storage.

Code Example for Linux #include <stdio.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <dat/udat.h>

struct sockaddr_in6 addr;

DAT_IA_ADDRESS_PTR ia_addr;

int status;
 Page 140

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

// Note: linux pton requires explicit encoding of IPv4 in
IPv6

addr.sin6_family = AF_INET6;

if (inet_pton(AF_INET6, "0:0:0:0:0:FFFF:192.168.0.1",

 &addr.sin6_addr) <= 0)

 return(-1); // Bad address or no address family support

// initialize other necessary fields such as port, flow,
etc.

ia_addr = (DAT_IA_ADDRESS_PTR) &addr;

status = dat_ep_connect(ep_handle, ia_addr, conn_qual,
timeout, 0, NULL,

 qos, DAT_CONNECT_DEFAULT_FLAG);

6.4.1.1 PORT

The port allows a Consumer to use an IP port for Connection
Management for all RDMA Transports. No mappings are needed for IP,
and for IB the IBTA RDMA IP CM Service Annex defines support for the
socket-based connection management including IP ports. DAPL does not
expose Port separately but as part of Interface Adapter Address.

6.4.2 CONNECTION QUALIFIER

Connection Qualifier allows a DAT Provider to associate an incoming
connection request with the entity providing the service. The Connection
Qualifier provides functionality similar to the IB Service ID, TCP Port
Number, or VI Discriminator.

Following are the mappings between DAT Connection Qualifiers and
Transport-specific qualifiers:

1) For IB, the Connection Qualifier is a Service ID.

2) For IP, the least-significant 16 bits of the Connection Qualifier are
used as a Port Number.

3) For VI, the least-significant 64 bits of the VI Discriminator are mapped
into DAT Connection Qualifier. To ensure interoperability, the Con-
sumer should use only the least-significant 64 bits.

6.4.3 COMMUNICATOR

The Communicator defines socket domain, type and protocol for DAT
Endpoints and Common Service Points, and is used for connection
management and Name Service. The Comminucator three fields formats
 Page 141

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
follows the normal sockets programming practice of the platform.
Communicator allows a socket-like transport-independent connection
model.

Code Example for Linux #include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <dat/udat.h>

struct sockaddr_in6 addr_local, addr_remote;

DAT_IA_ADDRESS_PTR ia_addr_local, ia_addr_remote;

DAT_COMM ep_comm = {PF_INET, SOCK_STREAM, 0};

DAT_EP_PARAM ep_param;

int status;

// Note: linux pton requires explicit encoding of IPv4 in
IPv6

addr_remote.sin6_family = AF_INET6;

if (inet_pton(AF_INET6, "0:0:0:0:0:FFFF:192.168.0.1",

 &addr_remote.sin6_addr) <= 0)

 return(-1); // Bad address or no address family support

addr_local.sin6_family = AF_INET6;

if (inet_pton(AF_INET6, "0:0:0:0:0:FFFF:192.168.0.2",

 &addr_local.sin6_addr) <= 0)

 return(-1); // Bad address or no address family support

addr_local.sin6_port = htons(810); // well-known port

// assign flowinfo and scope_id as required

...

ia_addr_local = (DAT_IA_ADDRESS_PTR) &addr_local;

if (dat_ep_create (...) != DAT_SUCCESS)

return (-1); // Can not create Endpoint

// Do bind socket equivalent

ep_param.comm = ep_comm;

ep_param.local_ia_address_ptr = ia_addr_local;

if (dat_ep_modify (ep_handle, DAT_EP_FIELD_EP_ATTR_COMM
& DAT_EP_FIELD_LOCAL_IA_ADDRESS_PTR, &ep_param) != DAT_SUC-
CESS) // Communicator or Address not supported
 Page 142

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

// initialize other necessary fields such as port, flow,
etc.

ia_addr_remote = (DAT_IA_ADDRESS_PTR) &addr_remote;

status = dat_ep_common_connect(ep_handle,

 ia_addr_remote, addr_length, timeout, 0, NULL,

 qos, DAT_CONNECT_DEFAULT_FLAG);

6.4.4 SERVICE POINT

A Service Point provides Consumers on the passive side the capability to
listen for incoming Connection Requests and generate events upon their
arrival. There is, at most, one Service Point listening on any given
Connection Qualifier.

uDAPL defines the API for query parameters of Service Point instances,
but it does not define an operation to modify Service Point parameters.
Consumers can destroy and create a new instance with new desired
parameters.

6.4.4.1 PUBLIC SERVICE POINT

The Public Service Point is a service point that allows the Consumer to
listen on requests for connections arriving on a specified Connection
Qualifier. The Public Service Point is used for client-server connection
establishment. The Connection Qualifier for the Public Service Point is
advertised by a Name Service.

The Consumer creates a Public Service Point that is a persistent listener
for incoming Connection Requests. The Public Service Point can
generate multiple Connection Request events. The number of
outstanding Connection Requests generated by the Public Service Point
is limited by the queue size of the associated Event Dispatcher. If the
event queue of the associated Event Dispatcher is full and a Connection
Request arrived, it is rejected with the appropriated return. If the
associated Event Dispatcher is destroyed, all incoming Connection
Requests are automatically rejected with the same return as if the event
queue were full.

The Backlog of the Public Service Point is contained in the queue
associated Event Dispatcher. The size of the backlog specifies the upper
bound on the number of pending Connection Request instances Provider
needs to support at any one time. If an Event Dispatcher is shared among
multiple Public Service Points, the size of its queue is an upper bound for
total Connection Requests for all of them combined. Consumers should
avoid using the Event Dispatcher associated with Public Service Points
for handling any other types of Event Streams.

DAT Consumers can destroy Public Service Points directly or indirectly by
closing the IA.
 Page 143

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.4.4.1.1 DAT_PSP_CREATE

Synopsis: DAT_RETURN

dat_psp_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_CONN_QUAL conn_qual,

IN DAT_EVD_HANDLE evd_handle,

IN DAT_PSP_FLAGS psp_flags,

OUT DAT_PSP_HANDLE *psp_handle

)

Parameters:

Description: dat_psp_create creates a persistent Public Service Point that can receive
multiple requests for connection and generate multiple Connection
Request instances that are delivered through the specified Event
Dispatcher in Notification events.

dat_psp_create is blocking. When the Public Service Point is created,
DAT_SUCCESS is returned and psp_handle contains a handle to an
opaque Public Service Point Object.

There is no explicit backlog for a Public Service Point. Instead, Consumers
can control the size of backlog through the queue size of the associated
Event Dispatcher.

psp_flags allows Consumers to request that the Provider create an implicit
Endpoint for each incoming Connection Request, or request that the
Provider should not create one per Connection Request. If the Provider

ia_handle: Handle for an instance of DAT IA.

conn_qual: Connection Qualifier of the IA the Public Service Point
shall be listening on.

evd_handle: Event Dispatcher that provides the Connection
Requested Events to the Consumer. The size of the
event queue for the Event Dispatcher controls the size
of the backlog for the created Public Service Point.

psp_flags: Flag that indicates whether the Provider or Consumer
creates an Endpoint per arrived Connection Request.
The value of DAT_PSP_PROVIDER_FLAG indicates
that the Consumer wants to get an Endpoint from the
Provider; a value of DAT_PSP_CONSUMER_FLAG
means the Consumer does not want the Provider to
provide an Endpoint for each arrived Connection
Request.

psp_handle: Handle to an opaque Public Service Point.
 Page 144

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

cannot satisfy the request, the operation shall fail and DAT_MODEL_
NOT_SUPPORTED is returned.

All Endpoints created by the Provider have DAT_HANDLE_NULL for the
Protection Zone and all Event Dispatchers. The Provider sets up Endpoint
attributes to match the Active side connection request. Consumers should
change Endpoint parameters, especially PZ and EVD, and are advised to
change parameters for local accesses prior to the connection request
acceptance with the Endpoint.

dat_psp_create is synchronous and thread safe.

Returns:

6.4.4.1.1.1 USAGE

Two uses of a Public Service Point are in the following sections.

Model 1 For this model, the Provider manipulates a pool of Endpoints for a Public
Service Point. The Provider can use the same pool for more than one
Public Service Point.

• The DAT Consumer creates a Public Service Point with a flag set to
DAT_PSP_PROVIDER_FLAG.

• The Public Service Point does the following:
• Collects native transport information reflecting a received

Connection Request
• Creates an instance of Connection Request
• Creates a Connection Request Notice (event) that includes the

Connection Request instance (which includes, among others,
Public Service Point, its Connection Qualifier, Provider-
generated Local Endpoint, and information about remote
Endpoint)

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle or
evd_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; conn_qual or
psp_flags is invalid.

DAT_CONN_QUAL_IN_USE The specified Connection Qualifier
was in use.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 145

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• Delivers the Connection Request Notice to the Consumer-
specified target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

• Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer can modify the provided local Endpoint to
match the Connection Request and must either accept() or reject()
the pending Connection Request.

• If accepted, the provided Local Endpoint is now in a “connected”
state and is fully usable for this connection, pending only any native
transport mandated RTU (ready-to-use) messages. This includes
binding it to the IA port if that was not done previously. The
Consumer is notified that the Endpoint is in Connected state by a
Connection Established Event on the Endpoint connect_evd_handle.

• If rejected, control of the Local Endpoint is returned back to the
Provider and its ep_handle is no longer usable by the Consumer.

Model 2 For this model, the Consumer manipulates a pool of Endpoints.
Consumers can use the same pool for more than one Service Point.

• DAT Consumer creates a Public Service Point with a flag set to
DAT_PSP_CONSUMER_FLAG.

• Public Service Point:
• Collects native transport information reflecting a received

Connection Request
• Creates an instance of Connection Request
• Creates a Connection Request Notice (event) that includes the

Connection Request instance (which includes, among others,
Public Service Point, its Connection Qualifier, Provider-
generated Local Endpoint and information about remote
Endpoint)

• Delivers the Connection Request Notice to the Consumer-
specified target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

• The Consumer creates a pool of Endpoints that it uses for accepting
Connection Requests. Endpoints can be created and modified at any
time prior to accepting a Connection Request with that Endpoint.

• Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer can modify its local Endpoint to match the
Connection Request and must either accept() or reject() the pending
Connection Request.
 Page 146

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• If accepted, the provided Local Endpoint is now in a “connected”
state and is fully usable for this connection, pending only any native
transport mandated RTU messages. This includes binding it to the
IA port if that was not done previously. The Consumer is notified that
the Endpoint is in Connected state by a Connection Established
Event on the Endpoint connect_evd_handle.

• If rejected, the Consumer does not have to provide any Endpoint for
the dat_cr_reject.

6.4.4.1.1.2 RATIONALE

Who can create an Endpoint per Connection Request might be a
requirement of the underlying Transport. For example, for VI, the
Consumer creates all Endpoints, for iWARP and IB allow both.
Consumers can check the Provider attributes to determine which models
are supported or read the Provider documentation that also provides this
information.

The Provider is strongly encouraged to create an Endpoint that is
immediately ready to accept a connection request (see advice to
Providers in 6.6.4.2 Rationale on page 200).

6.4.4.1.1.3 MODEL IMPLICATIONS

Consumers cannot associate a pool of Consumer Endpoints with Service
Points. They can do it manually by requesting that the Provider not
generate local Endpoints for incoming Connection Requests. Then the
Consumer can pick an Endpoint from its own pool of Endpoints for a
connection.

For iWARP transport Provider establishes the TCP connection or SCTP
association on its own. Any connection/association sockets supporting a
PSP are not visible to the Consumer.

6.4.4.1.2 DAT_PSP_CREATE_ANY

Synopsis: DAT_RETURN

dat_psp_create_any (

IN DAT_IA_HANDLE ia_handle,

OUT DAT_CONN_QUAL *conn_qual,

IN DAT_EVD_HANDLE evd_handle,

IN DAT_PSP_FLAGS psp_flags,

OUT DAT_PSP_HANDLE *psp_handle

)

Parameters:
ia_handle: Handle for an instance of DAT IA.
 Page 147

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_psp_create_any creates a persistent Public Service Point that can
receive multiple requests for connection, and generate multiple
Connection Request instances that are delivered through the specified
Event Dispatcher in Notification events.

dat_psp_create_any allocates an unused Connection Qualifier, creates a
Public Service point for it, and returns both the allocated Connection
Qualifier and the created Public Service Point to the Consumer.

Note to Provider: The allocated Connection Qualifier should be chosen
from “nonprivileged” ports that are not currently used or reserved by any
user or kernel Consumer or host ULP of the IA. The format of allocated
Connection Qualifier returned is specific to IA transport type.

dat_psp_create_any is blocking. When the Public Service Point is created,
DAT_SUCCESS is returned, psp_handle contains a handle to an opaque
Public Service Point Object, and conn_qual contains the allocated
Connection Qualifier. When return is not DAT_SUCCESS, psp_handle
and conn_qual return values are undefined.

There is no explicit backlog for a Public Service Point. Instead, Consumers
can control the size of backlog through the queue size of the associated
Event Dispatcher.

psp_flags allows Consumers to request that the Provider create an implicit
Endpoint for each incoming Connection Request, or request that the
Provider should not create one per Connection Request. If the Provider
cannot satisfy the request, the operation shall fail and DAT_MODEL_
NOT_SUPPORTED is returned.

All Endpoints created by the Provider have DAT_HANDLE_NULL for the
Protection Zone and all Event Dispatchers. The Provider sets up Endpoint
attributes to match the Active side connection request. Consumers should
change Endpoint parameters, especially PZ and EVDs, and are advised

conn_qual: Connection Qualifier of the IA the Public Service Point
is listening on.

evd_handle: Event Dispatcher that provides the Connection
Requested Events to the Consumer. The size of the
event queue for the Event Dispatcher controls the size
of the backlog for the created Public Service Point.

psp_flags: Flag that indicates whether the Provider or Consumer
creates an Endpoint per arrived Connection Request.
The value of DAT_PSP_PROVIDER_FLAG indicates
that the Consumer wants to get an Endpoint from the
Provider. A value of DAT_PSP_CONSUMER_FLAG
means the Consumer does not want the Provider to
provide an Endpoint for each arrived Connection
Request.

psp_handle: Handle to an opaque Public Service Point.
 Page 148

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

to change parameters, like the ones for local accesses prior to the
Connection Request acceptance with the Endpoint.

dat_psp_create is synchronous and thread safe.

Returns:

6.4.4.1.2.4 USAGE

6.4.4.1.2.5 RATIONALE

Who can create an Endpoint per Connection Request might be a
requirement of the underlying Transport. For example, for VI, the
Consumer creates all Endpoints and IB allows both the Consumer and the
Provider to create Endpoints. The Consumers can check the Provider
attributes to determine which models are supported or read the Provider
documentation that also provides this information.

The Provider is strongly encouraged to create an Endpoint that is
immediately ready to accept a Connection Request (see advice to
Providers in 6.6.4.2 Rationale on page 200).

For iWARP transport Provider establishes the TCP connection or SCTP
association on its own. Any connection/association sockets supporting a
PSP are not visible to the Consumer.

6.4.4.1.2.6 MODEL IMPLICATIONS

6.4.4.1.3 DAT_PSP_FREE

Synopsis: DAT_RETURN

dat_psp_free (

IN DAT_PSP_HANDLE psp_handle

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle or
evd_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; conn_qual or
psp_flags is invalid.

DAT_CONN_QUAL_UNAVAILABLE No Connection Qualifiers available.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.

psp_handle: Handle for an instance of the Public Service Point.
 Page 149

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_psp_free destroys a specified instance of the Public Service Point.

Any incoming Connection Requests for the Connection Qualifier on the
destroyed Service Point it had been listening on are automatically rejected
by the Provider with the return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left
to an implementation. But it must be consistent. This means that either a
Connection Requested Event has been generated for the Event
Dispatcher associated with the Service Point, including the creation of the
Connection Request instance, or the Connection Request is rejected by
the Provider without any local notification.

This operation shall have no effect on previously generated Connection
Requested Events. This includes Connection Request instances and,
potentially, Endpoint instances created by the Provider.

The behavior of this operation with creation of a Service Point on the same
Connection Qualifier at the same time is not defined. Consumers are
advised to avoid this scenario.

It is illegal to use the destroyed handle in any subsequent operation.

dat_psp_free is synchronous and non-thread safe.

Returns:

6.4.4.1.3.7 USAGE

6.4.4.1.3.8 RATIONALE

6.4.4.1.3.9 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.4.4.1.4 DAT_PSP_QUERY

Synopsis: DAT_RETURN

dat_psp_query (

IN DAT_PSP_HANDLE psp_handle,

IN DAT_PSP_PARAM_MASK psp_param_mask,

OUT DAT_PSP_PARAM *psp_param

)

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; psp_handle is
invalid.
 Page 150

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Parameters:

Description: dat_psp_query provides to the Consumer parameters of the Public
Service Point. Consumer passes in a pointer to the Consumer allocated
structures for PSP parameters that Provider fills.

psp_param_mask allows Consumers to specify which parameters they
would like to query. The Provider will return values for psp_param_mask
requested parameters. The Provider may return the value for any of the
other parameters.

dat_psp_query is synchronous and thread safe.

Returns:

6.4.4.1.4.10 USAGE

6.4.4.1.4.11 RATIONALE

6.4.4.1.4.12 MODEL IMPLICATIONS

6.4.4.2 COMMON SERVICE POINT

The Common Service Point is transport-independent analog of the Public
Service Point. It allows the Consumer to listen on socket-equivalent for
requests for connections arriving on a specified IP port instead of
transport-dependent Connection Qualifier. An IA Address follows the
platform conventions and provides among others the IP port to listen on.
An IP port of the Common Service Point advertisement is supported by
existing Ethernet infrastructure or DAT Name Service.

The Consumer creates a Commion Service Point that is a persistent
listener for incoming Connection Requests. The Common Service Point
can generate multiple Connection Request events. The number of
outstanding Connection Requests generated by the Common Service
Point is limited by the queue size of the associated Event Dispatcher. If
the event queue of the associated Event Dispatcher is full and a
Connection Request arrived, it is rejected with the appropriated return. If
the associated Event Dispatcher is destroyed, all incoming Connection
Requests are automatically rejected with the same return as if the event
queue were full.

psp_handle: Handle for an instance of Public Service Point.

psp_param_mask: Mask for PSP parameters.

psp_param: Pointer to a Consumer-allocated structure that
Provider fills for Consumer-requested parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; psp_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; psp_param_
mask is invalid.
 Page 151

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
The Backlog of the Common Service Point is contained in the queue
associated Event Dispatcher. The size of the backlog specifies the upper
bound on the number of pending Connection Request instances Provider
needs to support at any one time. If an Event Dispatcher is shared among
multiple Common Service Points, the size of its queue is an upper bound
for total Connection Requests for all of them combined. Consumers
should avoid using the Event Dispatcher associated with Common Service
Points for handling any other types of Event Streams.

DAT Consumers can destroy Common Service Points directly by using
dat_csp_free or indirectly by closing the IA.

6.4.4.2.1 DAT_CSP_CREATE

Synopsis: DAT_RETURN

dat_csp_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_COMM *comm,

IN DAT_IA_ADDRESS_PTR address,

IN DAT_EVD_HANDLE evd_handle,

OUT DAT_CSP_HANDLE *csp_handle

)

Parameters:

Description: dat_csp_create creates a persistent Common Service Point that can
receive multiple requests for connection and generate multiple Connection
Request instances that are delivered through the specified Event
Dispatcher in Notification events.

comm allows Consumer to specify socket domain, type and protocol for
the Service Point. The comm must follow the platform convention. That is
the values of domain and type are required while protocol can be default
of 0.

address allows Consumer to “bind” the Service Point to the specified
address, including IP port to listen on. The address must follow the

ia_handle: Handle for an instance of DAT IA.

comm: Communicator of the CSP.

address: IA Address to bind Common Service Point to.

evd_handle: Event Dispatcher that provides the Connection
Requested Events to the Consumer. The size of the
event queue for the Event Dispatcher controls the size
of the backlog for the created Common Service Point.

csp_handle: Handle to an opaque Common Service Point.
 Page 152

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

platform convension. For example, Consumer may specify NULL
address, so that Provider assign it.

If the incoming connection request does not match the comm and
address then the connection request is automatically rejected by the
Provider without generating Connection Request object.

There is no explicit backlog for a Common Service Point. Instead,
Consumers can control the size of backlog through the queue size of the
associated Event Dispatcher.

dat_csp_create is blocking. When the Common Service Point is created,
DAT_SUCCESS is returned and csp_handle contains a handle to an
opaque Common Service Point Object.

dat_csp_create is synchronous and thread safe.

Returns:

6.4.4.2.1.13 USAGE

The usage Common Service Point is analogous to model 2 of the PSP
one.

Consumer manipulates a pool of Endpoints. Consumers can use the
same pool for more than one Service Point.

• DAT Consumer creates a Common Service Point listening on
specific IP port. Consumer can specify comm and address the same
way it would be done for socket. This includes an ability to listen on a
single port over a range of IP Addresses for a requested protocol.

• Consumer Service Point:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle or
evd_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; address,
address_length, comm or their
combination is invalid.

DAT_PORT_IN_USE The specified IP Port was in use.

DAT_COMM_NOT_SUPPORTED The specified comm is not
supported by the Provider.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 153

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• Collects native transport information reflecting a received
Connection Request including requestor IP address and port,
Service Point IP Address and port, and the protocol number.

• Creates an instance of Connection Request
• Creates a Connection Request Notice (event) that includes the

Connection Request instance (which includes, among others,
Common Service Point, IP port its listens on, and information
about remote Endpoint)

• Delivers the Connection Request Notice to the Consumer-
specified target (CNO) evd_handle

The Common Service Point is persistent and continues to listen
for incoming requests for a connection.

• The Consumer creates a pool of Endpoints that it uses for accepting
Connection Requests. Endpoints can be created and modified at any
time prior to accepting a Connection Request with that Endpoint.

• Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer can modify its local Endpoint to match the
Connection Request and must either accept() or reject() the pending
Connection Request.

• If accepted, the provided Local Endpoint is now in a “connected”
state and is fully usable for this connection, pending only any native
transport mandated RTU messages. This includes binding it to the IA
port if that was not done previously. The Consumer is notified that the
Endpoint is in Connected state by a Connection Established Event
on the Endpoint connect_evd_handle.

• If rejected, the Consumer does not have to provide any Endpoint for
the dat_cr_reject.

6.4.4.2.1.14 RATIONALE

CSP allows Consumer to use the well-known connection model by
providing an analog of the listening bound socket even for the RDMA
Transport that does not have an analog for them. This allows Consumer
to have a Connection Model which is Transport independent, yet which
allows to use the whole machinery developed for Ethernet, including well-
known ULP ports, port mappers, inetd and so on.

6.4.4.2.1.15 MODEL IMPLICATIONS

The model allows Consumer to associate an domain, type, protocol, IP
address, and IP port to a listening point. Thus, the CSP may have a
different IA_Address and port than its IA. Provider can restrict which
values and combinations of these can be used by the Consumer. Provider
may follow the platform conventions for it.

The underlying transport provide a mechanism to supply the exact
information of the requestor that standard socket connection model
 Page 154

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

provides. For iWARP this is done by the underlying TCP or SCTP layer,
while for IB it is done by the RDMA IP CM Service Provider (which can be
DAPL Provider itself). IB DAPL Provider converts IP port and protocol into
Transport-specific Connection Qualifier using IBTA RDMA IP CM Service
Annex specification.

Consumer can find an CSP parameters by quering it. If the requestor used
dat_ep_common_connect than DAT_CR_PARAM will provide the IP
Address and IP port to which remote endpoint is “bound” to and for for
non-common model the IA Address and Port Qualifier of the remote IA
otherwise. The protocol number of the requested connection can be
extracted from the CSP which generated Connection Request.

The connection requests that the CSP gets are specific to the IA
regardless whether or not Consumer specified wildcard for the local IP
Address. Provider can restrict which values of address and comm it can
handle.

Provider can assign the default IA Address of the IA and some port to the
CSP if Consumer does not specify the address. Or Provider may require
that the address is specified by the Consumer.

It is up to the Provider to ensure that Consumer requested comm and IA
Address are valid and that IA can support them. For example, Provider
can restrict what IP Addresses can be used by IA, via an IA IP address
range defined by an administrator.

6.4.4.2.2 DAT_CSP_FREE

Synopsis: DAT_RETURN

dat_csp_free (

IN DAT_CSP_HANDLE csp_handle

)

Parameters:

Description: dat_csp_free destroys a specified instance of the Common Service Point.

Any incoming Connection Requests for the port of the destroyed Service
Point it had been listening on are automatically rejected by the Provider
with the return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and
left to an implementation. But it must be consistent. This means that either
a Connection Requested Event has been generated for the Event
Dispatcher associated with the Service Point, including the creation of the

csp_handle: Handle for an instance of the Comon Service
Point.
 Page 155

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Connection Request instance, or the Connection Request is rejected by
the Provider without any local notification.

This operation shall have no effect on previously generated Connection
Requested Events. This includes Connection Request instances and,
potentially, Endpoint instances created by the Provider.

The behavior of this operation with creation of a Service Point on the same
port at the same time is not defined. Consumers are advised to avoid this
scenario.

It is illegal to use the destroyed handle in any subsequent operation.

dat_csp_free is synchronous and non-thread safe.

Returns:

6.4.4.2.2.16 USAGE

6.4.4.2.2.17 RATIONALE

6.4.4.2.2.18 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.4.4.2.3 DAT_CSP_QUERY

Synopsis: DAT_RETURN

dat_csp_query (

IN DAT_CSP_HANDLE csp_handle,

IN DAT_CSP_PARAM_MASK csp_param_mask,

OUT DAT_CSP_PARAM *csp_param

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; csp_handle is
invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.

csp_handle: Handle for an instance of Common Service Point.

csp_param_mask: Mask for CSP parameters.

csp_param: Pointer to a Consumer-allocated structure that
Provider fills for Consumer-requested parameters.
 Page 156

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_csp_query provides to the Consumer parameters of the Common
Service Point. Consumer passes in a pointer to the Consumer allocated
structures for CSP parameters that Provider fills.

csp_param_mask allows Consumers to specify which parameters they
would like to query. The Provider will return values for csp_param_mask
requested parameters. The Provider may return the value for any of the
other parameters.

dat_csp_query is synchronous and thread safe.

Returns:

6.4.4.2.3.19 USAGE

6.4.4.2.3.20 RATIONALE

6.4.4.2.3.21 MODEL IMPLICATIONS

6.4.4.3 RESERVED SERVICE POINT

The Reserved Service Point allows a Consumer to establish connection
between a single Local Endpoint and a specific Remote Endpoint. A
Reserved Service Point is used for peer-to-peer Connection
establishment. The Connection Qualifier for the Reserved Service Point is
not designed to be advertised by a Name Service. The Connection
Qualifier of the Reserved Service Point is determined apriori through
agreement by the application ahead of time, or by some other out-of-band
approach.

The Consumer creates a Reserved Service Point explicitly with an
associated Consumer-created Local Endpoint. A Reserved Service Point
can only generate a single Connection Request. Subsequent remote
requests for connections to the Reserved Service Point do not generate
Connection Requests. The Provider shall generate the same responses
to the remote side as if no Service Point is associated with the Connection
Qualifier that the Reserved Service Point is associated with. Upon
generation of the Connection Request, the Reserved Service Point is still
valid and supports all DAT operations on its handle but do not generate
any more Connection Requests. The Consumer should destroy the
Reserved Service Point after it gets the Reserved Service Point
Connection Request. After it is destroyed, the Consumer can create
another Service Point on the same Connection Qualifier.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; csp_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; csp_param_
mask is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 157

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
The Consumer shall not destroy the Endpoint associated with a Reserved
Service Point. Instead The Consumer shall destroy the Reserved Service
Point first, and then the Consumer can destroy or reuse the associated
Endpoint.

6.4.4.3.1 DAT_RSP_CREATE

Synopsis: DAT_RETURN

dat_rsp_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_CONN_QUAL conn_qual,

IN DAT_EP_HANDLE ep_handle,

IN DAT_EVD_HANDLE evd_handle,

OUT DAT_RSP_HANDLE *rsp_handle

)

Parameters:

Description: dat_rsp_create creates a Reserved Service Point with the specified
Endpoint that generates, at most, one Connection Request that is
delivered to the specified Event Dispatcher in a Notification event.

dat_rsp_create is synchronous and thread safe.

Returns:

ia_handle: Handle for an instance of DAT IA.

conn_qual: Connection Qualifier of the IA the Reserved Service
Point listens to.

ep_handle: Handle for the Endpoint associated with the Reserved
Service Point that is the only Endpoint that can accept
a Connection Request on this Service Point. The value
DAT_HANDLE_NULL requests the Provider to
associate a Provider-created Endpoint with this
Service Point.

evd_handle: The Event Dispatcher to which an event of Connection
Request arrival is generated for.

rsp_handle: Handle to an opaque Reserved Service Point.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.
 Page 158

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.4.4.3.1.22 USAGE

The usage of a Reserve Service Point is as follows:

• The DAT Consumer creates a Local Endpoint and configures it
appropriately.

• The DAT Consumer creates a Reserved Service Point specifying the
Local Endpoint.

• The Reserved Service Point does the following:
• Collects native transport information reflecting a received

Connection Request
• Creates a Pending Connection Request
• Creates a Connection Request Notice (event) that includes the

Pending Connection Request (which includes, among others,
Reserved Service Point Connection Qualifier, its Local Endpoint,
and information about remote Endpoint)

• Delivers the Connection Request Notice to the Consumer-
specified target (CNO)evd_handle. The Local Endpoint is
transitioned from Reserved to Passive Connection Pending
state.

• Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer must either accept() or reject() the Pending
Connection Request.

• If accepted, the original Local Endpoint is now in a Connected state
and fully usable for this connection, pending only native transport
mandated RTU messages. This includes binding it to the IA port if
that was not done previously. The Consumer is notified that the
Endpoint is in a Connected state by a Connection Established Event
on the Endpoint connect_evd_handle.

• If rejected, the Local Endpoint point transitions into Unconnected
state. The DAT Consumer can elect to destroy it or reuse it for other
purposes.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle, evd_
handle, or ep_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; conn_qual is
invalid.

DAT_INVALID_STATE Parameter in an invalid state. For
example, an Endpoint was not in the
Idle state.

DAT_CONN_QUAL_IN_USE Specified Connection Qualifier is in
use.
 Page 159

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.4.4.3.1.23 RATIONALE

6.4.4.3.1.24 MODEL IMPLICATIONS

For iWARP transport Provider establishes the TCP connection or SCTP
association on its own. Any connection/association sockets supporting a
PSP are not visible to the Consumer.

6.4.4.3.2 DAT_RSP_FREE

Synopsis: DAT_RETURN

dat_rsp_free (

IN DAT_RSP_HANDLE rsp_handle

)

Parameters:

Description: dat_rsp_free destroys a specified instance of the Reserved Service Point.

Any incoming Connection Requests for the Connection Qualifier on the
destroyed Service Point was listening on are automatically rejected by the
Provider with the return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left
to an implementation. But it must be consistent. This means that either a
Connection Requested Event was generated for the Event Dispatcher
associated with the Service Point, including the creation of the Connection
Request instance, or the Connection Request is rejected by the Provider
without any local notification.

This operation shall have no effect on previously generated Connection
Request Event and Connection Request.

The behavior of this operation with creation of a Service Point on the same
Connection Qualifier at the same time is not defined. Consumers are
advised to avoid this scenario.

For the Reserved Service Point, the Consumer-provided Endpoint reverts
to Consumer control. Consumers shall be aware that due to a race
condition, this Reserved Service Point might have generated a
Connection Request Event and passed the associated Endpoint to a
Consumer in it.

It is illegal to use the destroyed handle in any subsequent operation.

dat_rsp_free is synchronous and non-thread safe.

Returns:

rsp_handle: Handle for an instance of the Reserved Service Point.

DAT_SUCCESS The operation was successful.
 Page 160

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.4.4.3.2.25 USAGE

6.4.4.3.2.26 RATIONALE

6.4.4.3.2.27 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.4.4.3.3 DAT_RSP_QUERY

Synopsis: DAT_RETURN

dat_rsp_query (

IN DAT_RSP_HANDLE rsp_handle,

IN DAT_RSP_PARAM_MASK rsp_param_mask,

OUT DAT_RSP_PARAM *rsp_param

)

Parameters:

Description: dat_rsp_query provides to the Consumer parameters of the Reserved
Service Point. The Consumer passes in a pointer to the Consumer-
allocated structures for RSP parameters that the Provider fills.

rsp_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for rsp_param_mask requested
parameters. The Provider can return values for any other parameters.

dat_rsp_query is synchronous and thread safe.

Returns:

DAT_INVALID_HANDLE Invalid DAT handle; rsp_handle is
invalid.

rsp_handle: Handle for an instance of Reserved Service Point.

rsp_param_mask: Mask for RSP parameters.

rsp_param: Pointer to a Consumer-allocated structure that the
Provider fills for Consumer-requested parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; rsp_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; rsp_param_mask
is invalid.
 Page 161

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.4.4.3.3.28 USAGE

6.4.4.3.3.29 RATIONALE

6.4.4.3.3.30 MODEL IMPLICATIONS

6.4.5 CONNECTION REQUEST

Connection Request instance is created by the Provider upon Connection
Request arrival on a Service Point. A handle for a Connection Request
instance is passed to a Consumer through a Connection Request Event.

A Connection Request contains information about the requestor side of
the connection, including the private data (see Appendix A.4).

A Connection Request can be queried but its parameters cannot be
modified.

6.4.5.1 DAT_CR_QUERY

Synopsis: DAT_RETURN

dat_cr_query (

IN DAT_CR_HANDLE cr_handle,

IN DAT_CR_PARAM_MASK cr_param_mask,

OUT DAT_CR_PARAM *cr_param

)

Parameters:

Description: dat_cr_query provides to the Consumer parameters of the Connection
Request. The Consumer passes in a pointer to the Consumer-allocated
structures for Connection Request parameters that the Provider fills.

cr_param_mask allows Consumers to specify which parameters to query.
The Provider returns values for cr_param_mask requested parameters.
The Provider can return values for any other parameters.

dat_cr_query is synchronous and thread safe.

Returns:

cr_handle: Handle for an instance of a Connection Request.

cr_param_mask: Mask for Connection Request parameters.

cr_param: Pointer to a Consumer-allocated structure that the
Provider fills for Consumer-requested parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cr_handle
handle is invalid.
 Page 162

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.4.5.1.1 USAGE

The Consumer uses dat_cr_query to get information about requesting a
remote Endpoint as well as a local Endpoint if it was allocated by the
Provider for the arrived Connection Request. The local Endpoint is
created if the Consumer used PSP with DAT_PSP_PROVIDER_FLAG as
the value for psp_flags. For the remote Endpoint, dat_cr_query provides
remote_ia_address and remote_port_qual. It also provides remote peer
private_data and its size.

The truncate_flag in the Connection Request Arrival event specifies
whether or not the arrived private data in Connection request object was
truncated or not.

6.4.5.1.2 RATIONALE

6.4.5.1.3 MODEL IMPLICATIONS

6.4.5.2 DAT_CR_ACCEPT

Synopsis: DAT_RETURN

dat_cr_accept (

IN DAT_CR_HANDLE cr_handle,

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data,

IN DAT_CONNECT_FLAGS multipathing_flags

)

Parameters:

DAT_INVALID_PARAMETER Invalid parameter; cr_param_mask
is invalid.

cr_handle: Handle to an instance of a Connection Request that
the Consumer is accepting.

ep_handle: Handle for an instance of a local Endpoint that the
Consumer is accepting the Connection Request on. If
the local Endpoint is specified by the Connection
Request, the ep_handle shall be DAT_HANDLE_
NULL.

private_data_size: Size of the private_data, which must be nonnegative.

private_data: Pointer to the private data that should be provided to
the remote Consumer when the Connection is
established. If private_data_size is zero, then private_
data can be NULL.
 Page 163

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_cr_accept establishes a Connection between the active remote side
requesting Endpoint and the passive side local Endpoint. The local
Endpoint is either specified explicitly by ep_handle or implicitly by a
Connection Request. In the second case, ep_handle is DAT_HANDLE_
NULL.

Consumers can specify private data that is provided to the remote side
upon Connection establishment. If Consumer specifies more private data
then Provider supports, see Provider max_private_data_size attribute,
then operation fails synchronously without any effect on the local
Endpoint, Pending Connection Request, private data, or remote Endpoint.

If the provided local Endpoint does not satisfy the requested Connection
Request, the operation fails without any effect on the local Endpoint,
Pending Connection Request, private data, or remote Endpoint.

The operation is asynchronous. The successful completion of the
operation is reported through a Connection Event of type DAT_
CONNECTION_EVENT_ESTABLISHED on the connect_evd of the local
Endpoint.

If the Provider cannot complete the Connection establishment, the
connection is not established and the Consumer is notified through a
Connection Event of type DAT_CONNECTION_EVENT_ACCEPT_
COMPLETION_ERROR on the connect_evd of the local Endpoint. It can
be caused by the active side timeout expiration, transport error, or any
other reason. If Connection is not established, Endpoint transitions into
Disconnected state and all posted Recv DTOs are flushed to its recv_evd_
handle (see 6.5.5 Endpoint States on page 110).

If the local Endpoint on which the connection is accepted does not have a
Protection Zone defined, or if one of its EVDs is not defined, then the
operation fails and returns DAT_INVALID_EP_STATE.

multipathing_flags: Multipathing flags for the accepted connection. The
default value is DAT_CONNECT_DEFAULT_FLAG,
which is 0. See Table 4, “CR Accept Flag Definitions,”
on page 164 for flag definitions.

Table 4 CR Accept Flag Definitions

Features Definition/Bit Value Description

MultiPathing DAT_MULTIPATH_FLAG
least significant

0 Consumer does not request multipathing.

1 Consumer requests multipathing.

2 Consumer requires multipathing.
 Page 164

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

A connection can only be accepted on an Endpoint that is in Unconnected
state if the Endpoint was not provided in the Connection Request, or on
the Endpoint in Passive or Tentative Connection Pending states if the
Endpoint was provided in the Connection Request. An attempt to accept
a connection on an Endpoint in any other state fails and returns DAT_
INVALID_EP_STATE.

This operation, if successful, also destroys the Connection Request
instance. Use of the handle of the destroyed Connection Request in any
subsequent operation fails.

If the accepting Endpoint comm, IA_Addreess and Connection
Qualifier are not defined then they inherits from the SP. If any of them are
defined for the accepting Endpoint it must match one for the Service Point.
When the connection is established the local Endpoint remote IA_
Address and remote Connection Qualifier are filled.

multipathing_flags allows Consumer to specify multipathing information
for the accepted connection. Consumer can request no multipathing,
which is the default value. It can require multipathing, which means that
connection should not be established if only a single path is available. Or
multipathing can be requested, which means that multipathed connection
can be established even if only a single path is available now.

dat_cr_accept is synchronous and non-thread safe.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cr_handle or
ep_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; private_data_size
or private_data is invalid, out of
range, or a combination of
parameters was invalid. For
example, accepting EP parameters,
like comm, local IA_Address, or
local Connection Qualifier do not
match Service point ones.

DAT_INVALID_STATE Parameter in an invalid state. For
example, an Endpoint was not in the
Unconnected , Passive Connection
Pending or Tentative Connection
Pending state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider. For
example, the requested multipathing
was not supported by the local
Provider.
 Page 165

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.4.5.2.1 USAGE

Consumers should be aware that Connection establishment might fail in
the following cases: If the accepting Endpoint has an outstanding RDMA
Read outgoing attribute larger than the requesting remote Endpoint or
outstanding RDMA Read incoming attribute, or if the outstanding RDMA
Read incoming attribute is smaller than the requesting remote Endpoint or
outstanding RDMA Read outgoing attribute.

Consumers should set the accepting Endpoint RDMA Reads as the target
(incoming) to a number larger than or equal to the remote Endpoint RDMA
Read outstanding as the originator (outgoing), and the accepting Endpoint
RDMA Reads as the originator to a number smaller than or equal to the
remote Endpoint RDMA Read outstanding as the target. DAT API does not
define a protocol on how remote peers exchange Endpoint attributes. The
exchange of outstanding RDMA Read incoming and outgoing attributes of
EPs is left to the Consumer ULP. Consumer can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or
remote RDMA Read operations on the connection, it can set the two
outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes
of the Endpoint, the Provider is free to pick up any value for default. The
Provider can change these default values during connection setup.

6.4.5.2.2 RATIONALE

6.4.5.2.3 MODEL IMPLICATIONS

The Provider cannot fail connection establishment because of insufficient
resources to support the Provider-chosen outstanding RDMA Read
attribute defaults for the Endpoint.

For iWARP/TCP transport if the Provider, either directly or indirectly via
underlying NIC support, supports IETF MPA protocol it shall map the
acceptance to the MPA Reply frame without rejection bit set.

For iWARP/SCTP the Provider maps the acceptance to a DDP Stream
Session Accept message.

If Consumer specified more private data than local Provider supports the
operations fails synchronously with DAT_INVALID_PARAMETER. If local
Provider support the amount of private data but remote Provider cannot
the remote Provider will pass the truncated private data to the Consumer
and set the truncate_flag in the Connection Request Arrival event.

For the IB transport, Provider shall zero out transport specific private data
fields beyond the Consumer provided private data. This ensures that
remote Provider can detect the extra private data beyond what it can
support.

For iWARP Providers that support IETF MPA both the size of the private
data and the private data shall be mapped into MPA Request frame.
 Page 166

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

If the accepting Endpoint does not have comm, local IA_Address or local
Connection Qualifier defines it inherits them from the Service Point on
which the connection request arrived. For PSP and RSP which do not
have comm defined the comm is inherited from the IA.

6.4.5.3 DAT_CR_REJECT

Synopsis: DAT_RETURN

dat_cr_reject (

IN DAT_CR_HANDLE cr_handle,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data

)

Parameters:

Description: dat_cr_reject rejects a Connection Request from the Active remote side
requesting Endpoint. If the Provider passed a local Endpoint into a
Consumer for the Public Service Point-created Connection Request, that
Endpoint reverts to Provider Control. The behavior of an operation on that
Endpoint is undefined. The local Endpoint that the Consumer provided for
Reserved Service Point reverts to Consumer control, and the Consumer
is free to use in any way it wants.

The Consumer-provided private_data is passed to the remote side and is
provided to the remote Consumer in the Connection Established Event.
Consumers can encapsulate any local Endpoint attributes that remote
Consumers need to know as part of an upper-level protocol. Providers
can also provide a Provider on the remote side any local Endpoint
attributes and Transport-specific information needed for Connection
establishment by the Transport.

The operation is synchronous. This operation also destroys the
Connection Request instance. Use of the handle of the destroyed
Connection Request in any subsequent operation fails.

dat_cr_reject is synchronous and non-thread safe.

cr_handle: Handle to an instance of a Connection Request that the
Consumer is rejecting.

private_
data_size:

Size of the private_data, which must be nonnegative.

private_
data:

Pointer to the private data that should be provided to the remote
Consumer when the Connection is established. If private_data_
size is zero, then private_data can be NULL.
 Page 167

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Returns:

6.4.5.3.1 USAGE

6.4.5.3.2 RATIONALE

6.4.5.3.3 MODEL IMPLICATIONS

For iWARP/TCP transport if the Provider, either directly or indirectly via
underlying NIC support, supports IETF MPA protocol it shall map the
rejection to the MPA Reply frame with rejection bit set.

For iWARP/SCTP transport, the Provider maps the rejection to a DDP
Stream Session Reject message.

Consumer should not rely on the remote peer getting the rejection private
data. The remote side may be timeout out already, destroyed EP that
requested connection, underlying transport connection has been teared
down or any other reason.

If Consumer specified more private data than local Provider supports the
operations fails synchronously with DAT_INVALID_PARAMETER. If local
Provider support the amount of private data but remote Provider cannot
the remote Provider will pass the truncated private data to the Consumer
and set the truncate_flag in the Connection Request Arrival event.

For the IB transport, Provider shall zero out transport specific private data
fields beyond the Consumer provided private data. This ensures that
remote Provider can detect the extra private data beyond what it can
support.

For iWARP Providers that support IETF MPA both the size of the private
data and the private data shall be mapped into MPA Request frame.

6.4.5.4 DAT_CR_HANDOFF

Synopsis: DAT_RETURN

dat_cr_handoff (

IN DAT_CR_HANDLE cr_handle,

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; cr_handle was
invalid.

DAT_INVALID_PARAMETER Invalid parameter; private_data_size
or private_data is invalid, out of
range, or a combination of
parameters was invalid.

DAT_INVALID_STATE Parameter in an invalid state. For
example, a CR Endpoint was not in
the Unconnected , Passive
Connection Pending or Tentative
Connection Pending state.
 Page 168

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

IN DAT_CONN_QUAL handoff

)

Parameters:

Description: dat_cr_handoff hands off the Connection Request to another Service
Point specified by the Connection Qualifier handoff.

The operation is synchronous. This operation also destroys the
Connection Request instance. Use of the handle of the destroyed
Connection Request in any subsequent operation fails.

dat_cr_handoff is synchronous and non-thread safe.

Returns:

6.4.5.4.1 USAGE

Consumers are advised that support of this features by iWarp Providers
is unlikely. When the connection is known to be over iWarp/TCP the
Consumer may be able to use socket CM to accomplish the same on the
lower transport layer.

6.5 SHARED RECEIVE QUEUE

Shared Receive Queues provide Consumer the ability to share receive
buffers among several endpoints.

6.5.1 DAT_SRQ_CREATE

Synopsis: DAT_RETURN

dat_srq_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

cr_handle: Handle to an instance of a Connection Request that the
Consumer is handing off.

handoff: Indicator of another Connection Qualifier on the same IA to
which this Connection Request should be handed off.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle. cr_handle was
invalid.

DAT_INVALID_PARAMETER Invalid parameter; handoff is invalid.

DAT_INVALID_STATE Parameter is in an invalid state. For
example, a CR associated socket is
in the state that cannot be handed
off.
 Page 169

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
IN DAT_SRQ_ATTR *srq_attr,

OUT DAT_SRQ_HANDLE *srq_handle

)

Parameters:

Description: dat_srq_create creates an instance of a Shared Receive Queue (SRQ)
that is provided to the Consumer as srq_handle. If the value of DAT_
RETURN is not DAT_SUCCESS then the value of srq_handle is not
defined.

The created SRQ is unattached to any Endpoints.

Protection Zone pz_handle allows Consumers to control what local
memory can be used for the Recv DTO buffers posted to the SRQ. Only
memory referred to by LMRs of the posted Recv buffers that match the
SRQ Protection Zone can be accessed by the SRQ.

The srq_attributes parameter specifies the initial attributes of the created
SRQ. If the operation is successful, then created SRQ has a minimum
queue size of max_recv_dtos and the number of entries on the posted
Recv scatter list is at minimum equal to max_recv_iov. The created SRQ
can have the queue size and support number of entries on post Recv
buffers larger than requested. Consumer can query SRQ to find out the
actual supported queue size and maximum Recv IOV.

Consumer must set low_watermark to DAT_SRQ_LW_DEFAULT to
ensure that asynchronous event is not generated immediately, because
there are no buffers in the created SRQ. Consumer should set Maximum
Receive DTO attribute and Maximum number of elements in IOV for
posted buffers as needed.

When an associated EP tries to get a buffer from SRQ and there are no
buffers available, the behavior of the EP is the same as when there are no
buffers on the EP Recv Work Queue.

dat_srq_create is synchronous and thread safe.

Returns:

ia_handle: Handle for an open instance of the IA to which the
created SRQ belongs.

pz_handle Handle for an instance of the Protection Zone.

srq_attr: Pointer to a structure that contains Consumer-
requested SRQ attributes.

srq_handle: Handle for the created instance of a Shared Receive
Queue.

DAT_SUCCESS The operation was successful.
 Page 170

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.5.1.1 USAGE

SRQ is created by Consumer prior to creation of EPs that will use it. Some
Providers may restrict whether multiple EPs that share a SRQ can have
different Protection Zones. Check srq_ep_pz_difference_support
Provider attribute for it. The EPs that use SRQ may or may not use the
same recv_evd.

Since a Recv buffer of SRQ can be used by any EP that is using SRQ,
Consumer should ensure that posted Recv buffers are large enough to
receive an incoming message on any of the EPs.

If Consumer does not want to get an asynchronous event when the
number of buffers in SRQ falls below the Low Watermark they should
leave its value as DAT_SRQ_LW_DEFAULT. If Consumers do want to get
a notification they can set the value to the desired one by calling dat_srq_
set_lw.

6.5.1.2 RATIONALE

SRQ allows Consumer to use fewer than the maximum Recv buffers for
each connection. If Consumer can upper bound the number of incoming
messages over all connections whose local EP is using SRQ, instead of
posting this maximum for each connection Consumer can post them for
all connections on SRQ. For example, the maximum utilized link
bandwidth divided over the message size can be used for an upper
bound.

6.5.1.3 MODEL IMPLICATIONS

Depending on the underlying Transport one or more messages can arrive
simultaneously on an EP that is using SRQ. Thus, the same EP can have
multiple Recv buffers in its possession without these buffers being on
SRQ or recv_evd.

Since Recv buffers can be used by multiple connections of the local EPs
that are using SRQ, the completion order of the Recv buffers is no longer
guaranteed even when they use the same recv_evd. However, for each
connection the Recv buffers completion order is guaranteed to be in the
order of the posted matching Sends to the other end of the connection.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle or
pz_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; One of the
requested SRQ attributes was
invalid or a combination of attributes
is invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 171

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
There is no ordering guarantee that Receive buffers will be returned in the
order they were posted even if there is only a single connection (Endpoint)
associated with the SRQ. There is no ordering guarantee between
different connections or between different recv_evd.

6.5.2 SHARED RECEIVE QUEUE STATES

The list of SRQ States and allowed SRQ operations is as follows:

dat_srq_free can be called on the SRQ in any state. It can be successful
only if there are no EPs that use the SRQ.

EPs cannot dequeue any Recv buffers from SRQ that is in an error state.

An attempt by an EP to dequeue Recv buffer from SRQ will transition EP
into error state and a generate connection broken event on the EP
connect_evd. dat_ep_create_with_srq can use SRQ in an error state. All
other EP operations can use SRQ in error state.

If SRQ is in an error state then all non allowed operations on SRQ shall
synchronously fail.

When SRQ transitions into an error state an asynchronous event will be
generated for it that will be delivered on IA async_evd.

6.5.2.1 MODEL IMPLICATION

Implementations may use registered memory for internal representation
for DTOs (Work Requests). This memory will be typically allocated and
registered by the Provider upon creation of a SRQ. If for some reason this
memory becomes deregistered while the SRQ is operational, a
subsequent attempt by the adapter to dequeue a Recv DTO from the SRQ
will fail and result in the SRQ being transitioned to an error state.

6.5.3 SHARED RECEIVE QUEUE ATTRIBUTES

The list of Shared Receive Queue attributes is as follows:

SRQ State Description Allowed Operations
Operational SRQ is fully functional and associated EPs

can dequeue Recv buffers from it.
dat_srq_free, dat_srq_set_lw,
dat_srq_query, dat_srq_resize,
dat_srq_post_recv, dat_ep_
create_with_srq, dat_ep_recv_
query, dat_ep_set_watermark.

Error SRQ is non-functional and associated EPs
cannot dequeue Recv buffers from it. The
only way to recover is to destroy all EPs
associated with SRQ and then destroy SRQ.
All Recv buffers posted on SRQ that are not in
recv_evd of associated EPs are under
Consumer control after SRQ destruction.

dat_srq_free, dat_srq_post_
recv, dat_ep_create_with_srq,
dat_ep_recv_query, dat_ep_
set_watermark.

Max_Recv_DTOs: Maximum number of Receive DTOs for SRQ.
 Page 172

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The Maximum Recv DTO is either the size of the shared receive queue
request by Consumer on create or modify SRQ operations, or the actual
size of SRQ.

The Recv buffer is outstanding and occupies an entry on SRQ until its
DTO completion is dequeued from an associated EP recv_evd. The
outstanding Receive buffers include the buffers on SRQ, the buffers that
has been posted to SRQ that are at SRQ associated EPs, and the buffers
posted to SRQ for which completions have been generated but not yet
reaped by Consumer from recv_evds of the EPs that use the SRQ.

Consumer requests the number of Receive DTOs on SRQ via dat_srq_
create or dat_srq_resize. Provider must create or modify SRQ such that
it has at least that many entries on SRQ. But it is allowed to have more
than the number requested by the Consumer. Consumer can check the
actual queue length of SRQ via dat_srq_query operation.

Consumer requests the maximum number of IOV elements in Receive
DTOs on SRQ via dat_srq_create. Provider must create SRQ such that it
supports at least that many elements in Recv IOV for the SRQ. But it is
allowed to have more than the number requested by the Consumer.
Consumer can check the actual maximum number of IOV elements for
Receive of SRQ via dat_srq_query operation.

The low watermark attribute of SRQ allows Consumers to get an
asynchronous event when the number of Recv buffers on SRQ falls below
the Consumer-specified threshold. This allows Consumer to replenish the
number of Recv. buffers on SRQ or take some other actions before SRQ
runs out of buffers and connections that use it may break upon arrival of
new messages.

An asynchronous event will be generated when the number of buffers on
SRQ is below the low watermark for the first time. This may happen when
low watermark is set, or when an associated EP takes a buffer from the
SRQ. The event will be generated only once. In order for Provider to
generate event again Consumer needs to arm the low watermark again
via dat_srq_set_lw. Upon SRQ creation Low Watermark must be set to
DAT_SRQ_LW_DEFAULT to avoid immediate generation of an
synchronous event.

6.5.3.1 USAGE

Consumers who are not concern about Low Watermark semantics should
set this attribute to DAT_SRQ_LW_DEFAULT. The default value
guarantees that no asynchronous event will be generated for the SRQ
regardless of how many buffers are on SRQ.

Max_Recv_IOV: Maximum number of elements in IOV that the
a posted Receive DTO for SRQ can have.

Low_Watermark The low watermark for the number of Recv
buffers on SRQ.
 Page 173

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.5.3.2 RATIONALE

6.5.3.3 MODEL IMPLICATION

There are two more attributes related to SRQ but they are attributes of an
EP that is using SRQ. The first one is the hard limit high watermark for the
number of buffers consumed by the EP from SRQ and not yet reaped by
a Consumer. The other one is the soft high watermark for the number of
buffers consumed by the EP from SRQ for which completions have not
been generated yet. For more details of their use and rationale for them
see (6.6.6 Endpoint Attributes on page 207).

6.5.4 DAT_SRQ_SET_LW

Synopsis: DAT_RETURN

dat_srq_set_lw (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT low_watermark

)

Parameters:

Description: dat_srq_set_lw sets the low watermark value for SRQ and arms SRQ for
generating an asynchronous event for low watermark. An asynchronous
event will be generated when the number of buffers on SRQ is below the
low watermark for the first time. This may happen during this call or when
an associated EP takes a buffer from the SRQ.

The asynchronous event will be generated only once per setting of the low
watermark. Once an event is generated no new asynchronous events for
the number of buffers in SRQ below the specified value will be generated
again until the SRQ is set for the Low Watermark again. If Consumer is
interested in generating the event again Consumer should set the low
watermark again.

dat_srq_set_lw is synchronous. Its thread safety is Provider dependent.

Returns:

srq_handle: Handle for an instance of a Shared Receive Queue.

low_watermark The low watermark for the number of Recv buffers on
SRQ.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; srq_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; low_watermark is
higher than the max_recv_dtos.
 Page 174

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.5.4.1 USAGE

Upon getting the asynchronous event for srq low watermark Consumer
can replenish Recv buffers on SRQ or take any other action that is
appropriate.

6.5.4.2 RATIONALE

6.5.4.3 MODEL IMPLICATIONS

Regardless of whether or not an asynchronous event for the low
watermark has been generated this operation will set the generation of an
asynchronous event with the Consumer-provided low watermark value. If
the new low watermark value is below the current number of free Receive
DTOs posted to the SRQ then an asynchronous event will be generated
immediately. Otherwise the old low watermark value is simply replaced
with the new one.

6.5.5 DAT_SRQ_FREE

Synopsis: DAT_RETURN

dat_srq_free (

IN DAT_SRQ_HANDLE srq_handle

)

Parameters:

Description: dat_srq_free destroys an instance of the SRQ. The SRQ cannot be
destroyed if it is in use by an EP.

It is illegal to use the destroyed handle in any subsequent operation.

dat_srq_free is synchronous and non-thread safe.

Returns:

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider. Provider
does not support SRQ Low
Watermark.

srq_handle: Handle for an instance of SRQ to be destroyed.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; srq_handle is
invalid.

DAT_SRQ_IN_USE Shared Receive Queue cannot be
destroyed because it is in still
associated with an EP instance.
 Page 175

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.5.5.1 USAGE

6.5.5.2 RATIONALE

6.5.5.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.5.6 DAT_SRQ_QUERY

Synopsis: DAT_RETURN

dat_srq_query (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_SRQ_PARAM_MASK srq_param_mask,

OUT DAT_SRQ_PARAM *srq_param

)

Parameters:

Description: dat_srq_query provides SRQ parameters to the Consumer. The
Consumer passes in a pointer to the Consumer-allocated structures for
SRQ parameters that the Provider fills.

srq_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for srq_param_mask requested
parameters. The Provider can return values for any other parameters.

In addition to the elements in SRQ attribute, dat_srq_query provides
additional information in the srq_param structure if Consumer requests it
via srq_param_mask settings. The two that are related to entry counts on
SRQ are: the number of Receive buffers (available_dto_count) available
for EPs to dequeue and the number of occupied SRQ entries
(outstanding_dto_count) not available for new Recv buffer postings.

dat_srq_query is synchronous. Its thread safety is Provider-dependent.

Returns:

srq_handle: Handle for an instance of the SRQ.

srq_param_mask: Mask for SRQ parameters.

srq_param: Pointer to a Consumer-allocated structure that the
Provider fills with SRQ parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; srq_param_mask
is invalid.
 Page 176

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.5.6.1 USAGE

Provider may not be able to provide the number of outstanding Recv of
SRQ or available Recvs of SRQ. If Provider does not support query for
one of these values then the Provider attribute indicates this. Even when
Provider supports the query for one or both of these values it may not be
able to provide this value at this moment. In either case the return value
for the attribute that cannot be provided will be DAT_VALUE_UNKNOWN.

Example: Consumer created SRQ with 10 entries and associated 1 EP
with it. 3 Recv buffers have been posted to it. Query will report: max_recv_
dtos=10, available_dto_count=3, outstanding_dto_count=3. After Send
message arrival the query will report: max_recv_dtos=10, available_dto_
count=2, outstanding_dto_count=3. After Consumer dequeues Recv
completion the query will report: max_recv_dtos=10, available_dto_
count=2, outstanding_dto_count=2. In general each EP associated with
SRQ may have multiple buffers in progress of receiving messages as well
completed Recv on EVDs. Watermark setting help to control how many
Recv buffers posted to SRQ an Endpoint can own.

6.5.6.2 RATIONALE

6.5.6.3 MODEL IMPLICATIONS

If Provider cannot support query for the number of outstanding Recv of
SRQ or available Recvs of SRQ the value returned for that attribute
should be DAT_VALUE_UNKNOWN.

6.5.7 DAT_SRQ_RESIZE

Synopsis: DAT_RETURN

dat_srq_resize(

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT srq_max_recv_dto

)

Parameters:

Description: dat_srq_resize modifies the size of the queue of SRQ.

Resizing of Shared Receive Queue shall not cause any incoming
messages on any of the EPs that use the SRQ or any SRQ buffers to be

DAT_INVALID_HANDLE Invalid DAT handle; srq_handle is
invalid.

srq_handle: Handle for an instance of Shared Receive Queue.

srq_max_recv_dto: New maximum number of Recv DTOs that Shared
Receive Queue must hold.
 Page 177

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
lost. If the number of outstanding Recv buffers on the SRQ is larger then
the requested srq_max_recv_dto, the operation can return DAT_
INVALID_STATE and does not change SRQ. This includes not just the
buffers on the SRQ but all outstanding Receive buffers that had been
posted to the SRQ and whose completions have not reaped yet. Thus, the
outstanding buffers include the buffers on SRQ, the buffers posted to SRQ
that are at SRQ associated EPs, and the buffers posted to SRQ for which
completions have been generated but not yet reaped by Consumer from
recv_evds of the EPs that use the SRQ.

If the requested srq_max_recv_dto is below the SRQ low_watermark then
the operation returns DAT_INVALID_STATE and does not change SRQ.

dat_srq_resize is synchronous. Its thread safety is Provider-dependent.

Returns:

6.5.7.1 USAGE

6.5.7.2 RATIONALE

6.5.7.3 MODEL IMPLICATIONS

dat_srq_resize is required not to lose any buffers. Thus, it cannot shrink
below the outstanding number of Recv buffers on SRQ. There is no
requirement to shrink SRQ in order to return DAT_SUCCESS.

The quality of the implementation determines how closely to the
Consumer-requested value Provider shrinks SRQ. For example, Provider
can shrink SRQ to the Consumer requested value and if the requested
value is smaller than outstanding buffers on SRQ then return DAT_
INVALID_STATE. Or Provider can shrink to some value larger than the
requested by the Consumer but below current SRQ size. Or Provider does
not change the SRQ size and still returns DAT_SUCCESS.

6.5.8 DAT_SRQ_POST_RECV

Synopsis: DAT_RETURN

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; srq_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; srq_max_recv_
dto is invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_STATE Invalid state. Either the number of
entries on the SRQ exceeds the
requested SRQ queue length or
requested SRQ queue length is
smaller than SRQ low watermark.
 Page 178

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

dat_srq_post_recv (

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie

)

Parameters:

Description: dat_srq_post_recv posts the receive buffer that can be used for the
incoming message into the local_iov by any connected EP that uses SRQ.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole
message is received. This ensures that all the “front” segments of the
local_iov I/O Vector are completely filled, only one segment is partially
filled, if needed, and all segments that follow it are not filled at all. The
actual order of segment fillings is left to the implementation. The local_iov
specification should adhere to the rules defined in Appendix A.4.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted Receive.

The completion of the posted Receive is reported to the Consumer
asynchronously through a DTO Completion event based on the
configuration of the EP that dequeues the posted buffer and the specified
completion_flags value for Solicited Wait for the matching Send. If EP
Recv Completion Flag is DAT_COMPLETION_UNSIGNALLED_
FLAG, which is the default value for SRQ EP, then all posted Recvs will
generate completions with Signal Notifications.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When a Consumer does not adhere to this rule, the behavior
of the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov but not the memory it
specified back after the dat_srq_post_recv returns should document this
behavior and also specify its support in Provider attributes. This behavior

srq_handle: Handle for an instance of the Shared Receive Queue.

num_segments: Number of lmr_triplets in local_iov. Can be 0 for
receiving a 0 size message.

local_iov: I/O Vector that specifies the local buffer to be filled.
Can be NULL for receiving a 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the Receive DTO. Can be NULL.
 Page 179

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
allows Consumer full control of the local_iov content after dat_srq_post_
recv returns. Because this behavior is not guaranteed by all Providers,
portable Consumers shall not rely on this behavior. Consumers shall not
rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_srq_post_recv is at least the
equivalent of posting a Receive operation directly by native Transport.
Providers shall avoid resource allocation as part of dat_srq_post_recv to
ensure that this operation is nonblocking.

The completion of the Receive posted to the SRQ is equivalent to what
happened to the Receive posted to the Endpoint, for the Endpoint that
dequeued the Receive buffer from the Shared Receive queue.

The posted Recv DTO will complete with signal, equivalent to the
completion of Recv posted directly to the Endpoint that dequeued the
Recv buffer from SRQ with DAT_COMPLETION_UNSIGNALLED_FLAG
value not set for it.

The posted Recv DTOs will complete in the order of Send postings to the
other endpoint of each connection whose local EP uses SRQ. There is no
ordering among different connections regardless if they share SRQ and
recv_evd or not.

Buffers posted to an SRQ will be allocated to a specific EP based upon
arrival of actual traffic. In no case will more buffers be allocated to an EP
than required for the messages sent by the remote peer.

When the EP transitions from the connected state, all buffers already
allocated to it will be completed as flushed operations. The decision on
whether to return these buffers to the SRQ is left to the Consumer.

If the reported status of the Completion DTO event corresponding to the
posted RDMA Read DTO is not DAT_DTO_SUCCESS, the content of the
local_iov is not defined and the transfered_length in the DTO Completion
event is not defined.

The operation is valid for all states of the Shared Receive Queue.

dat_srq_post_recv is asynchronous, nonblocking, and its thread safety is
Provider-dependent.

Returns:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one
of the IOV segments pointed to a
memory outside its LMR.

DAT_INVALID_HANDLE Invalid DAT handle; srq_handle is
invalid.
 Page 180

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.5.8.1 USAGE

For the best Recv operation performance, the Consumer should align
each buffer segment of local_iov to the Optimal Buffer Alignment attribute
of the Provider. For portable applications, the Consumer should align
each buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

Since any of the Endpoints that use the SRQ can dequeue the posted
buffer from SRQ, Consumers should post a buffer large enough to handle
incoming messages on any of these Endpoint connections.

The Consumer should provision the SRQ with enough buffers to
accommodate the maximum forseeable number of in-flight messages.
This can typically be lower than the maximum per connection times the
number of connections. However, reliable estimation of how much
underprovisioning is safe is an application specific problem and left to the
application.

When supporting multiple connections from a single SRQ, the Consumer
should take extra steps to safeguard against a single remote client
adversely impacting other clients through malicious or misbehaving code.

6.5.8.2 RATIONALE

6.5.8.3 MODEL IMPLICATIONS

The buffer posted to SRQ does not have a DTO completion flag value.
Posting Recv buffer to SRQ is semantically equivalent to posting to EP
with DAT_COMPLETION_UNSIGNALLED_FLAG not set. The
configuration of the Recv Completion flag of an Endpoint that dequeues
the posted buffer defines how DTO completion is generated. If the
Endpoint Recv Completion flag is DAT_COMPLETION_SOLICITED_
WAIT_FLAG then matching Send DTO completion flag value for Solicited
Wait determines if the completion will be Signalled or not. If the Endpoint
Recv Completion flag is not DAT_COMPLETION_SOLICITED_WAIT_
FLAG then the posted Recv completion will be generated with Signal. If
the Endpoint Recv Completion flag is DAT_COMPLETION_EVD_
THRESHOLD_FLAG then the posted Recv completion will be generated
with Signal and dat_evd_wait threshold value controls if the waiter will be
unblocked or not.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between an LMR of
one of the local_iov segments and
the SRQ.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. One of the
LMRs used in local_iov was either
invalid or did not have the local write
privileges.
 Page 181

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Only the Endpoint that is in Connected or Disconnect Pending states can
dequeue buffers from SRQ. When an Endpoint is transitioned into
Disconnected state then all the buffers that it dequeued from SRQ are
queued on the Endpoint recv_evd. All the buffers that the Endpoint have
not completed by the time of transition into Disconnected state, that have
not completed message reception, will be flashed.

6.6 ENDPOINT

Following is the state transition diagram of the Endpoint Object.
 Page 182

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.1 ENDPOINT LIFECYCLE

This section discusses the lifecycle of DAT Endpoints, as illustrated in the
Endpoint State Transition Diagram.

The diagram uses the following color conventions:
 Page 183

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• Yellow represents Endpoint states observed by the DAT Consumer.
• Green represents Events related to the Connection establishment

and tear down delivered to the DAT Consumer.
• Pink represents Provider-implied actions and potential Endpoint

internal states not directly visible by DAT Consumers. They are
defined on the diagram to clarify the state transitions for DAT
Consumers and to provide guidance for DAT Providers.

• Red arrows represent transitions caused by direct Consumer
actions.

• Gray arrows represent transitions caused indirectly, on behalf of the
Consumer by the Provider.

The diagram uses the following Object conventions:

• States are shown with slightly rounded edges. A state is
characterized by the need for an external act by a Consumer (local or
remote), or the Provider acts like a timeout expiration, to cause a
transition to another state.
• Most states are shown in yellow.
• States shown in pink represent states that are typically invisible

to the DAT Consumer because they reflect transport-dependent
implementation details that can have some time duration. For
example, the Completion Pending state for InfiniBand can
represent the time waiting for an RTU.

• Actions are shown with fully rounded edges:
• Actions are green when the action involves Provider interaction

with the DAT Consumer.
• Actions are pink when the action involves Provider interactions

with the native transport or the Provider of the remote peer.
• Transitions are represented by lines. The labels indicate Consumer

DAT Call, an external event, such as a timeout, that triggers the
transition from one state to another.

Endpoints can be created explicitly by the Consumer, or implicitly by the
Provider. The Provider is strongly encouraged to create an EP that is
ready to be connected (see 6.5.3.2 Rationale on page 107). The explicit
creation path is described first.

The first use of an Unconnected Endpoint is on the active side of the
active-passive model of the Connection establishment to initiate a
Connection establishment:

• The Consumer requests the connection by issuing dat_ep_connect,
dat_ep_common_connect or dat_ep_dup_connect on the
Unconnected Endpoint.
 Page 184

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• The Transport-specific Connection Request must be sent by the
local Provider to the remote peer. This can be sent to the appropriate
Connection Manager, but this is invisible to either Consumer.

• This results in transitioning the Endpoint into the Active Request
Pending state. The Endpoint transitions out of this state by:
• Receiving an acceptance from the remote peer
• Receiving an explicit rejection from the remote peer
• Receiving a rejection locally due to an inability to reach the

remote host or the remote host is not responding within the
timeout

• Receiving a rejection due to timeout
• Receiving a rejection from another source (such as the local

networking stack).

Each of these receives generates an event on connect_evd_handle
of the Endpoint. Although DAT does not define an explicit operation
for canceling a Connection Request, the Consumer can call dat_ep_
disconnect (abrupt or graceful results in the same abrupt disconnect)
in any Endpoint state during connection setup. (The Reserved,
Passive Connection Pending and Tentative Connection Pending
states, as well as Unconnected state, are not states of connection
setup; therefore, they do not support the dat_ep_
disconnect operation.) This transitions the Endpoint into
Disconnected state, flushes all preposted DTOs if EP is not
associated with SRQ and leaves preposted Recv buffers on SRQ
otherwise, and generates a Disconnected event on the Endpoint
connect_evd_handle.

• When a peer rejection is received by the Provider, a Peer
Connection Rejected Event must be generated on the connect_evd_
handle of the Endpoint. The Endpoint transitions into a Disconnected
state and flushes all preposted DTOs if EP is not associated with
SRQ and leaves preposted Recv buffers on SRQ otherwise. Peer
rejections occur when the remote Consumer rejects the connection
(dat_cr_reject).

• When a nonpeer rejection is received by the Provider, a Nonpeer
Connection Rejected Event must be generated on the connect_evd_
handle of the Endpoint. The Endpoint transitions into a Disconnected
state and flushes all preposted DTOs if EP is not associated with
SRQ and leaves preposted Recv buffers on SRQ otherwise. Nobody
listening on the Connection Qualifier, backlog of the Service Point on
the Connection Qualifier is full are some of the examples of the
nonpeer rejection. If remote Provider rejects the connection request,
that will result in local nonpeer reject, it can provide additional
reason for rejection or even hints on how to fix it that may be
delivered in the reject private data. The format of this private data is
transport-specific and is outside the scope of this API.
 Page 185

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• When the Provider times out the Connection Request but the remote
host is reachable, a Connection Timeout Event must be generated
on the connect_evd_handle of the Endpoint before the Endpoint
transitions state and flushes all preposted DTOs if EP is not
associated with SRQ and leaves preposted Recv buffers on SRQ
otherwise.

• When the Provider cannot reach the remote host (if the Provider can
determine locally that remote_ia_address is invalid, dat_ep_connect
fails synchronously with DAT_INVALID_ADDRESS), or if the remote
host does not respond within the Consumer requested Timeout, an
Unreachable Event must be generated on the connect_evd_handle
of the Endpoint. The Endpoint transitions into Disconnected state
and flushes all preposted DTOs if EP is not associated with SRQ and
leaves preposted Recv buffers on SRQ otherwise. Inablity to
generate a Path to the remote host or the remote host not
responding for security reason are examples of the unreachable
situation.

• When the requesting Endpoint cannot be connected to the requested
remote side before Timeout expiration, because of the Transport-
specific remnants of the previous connection (IB TimeWait state) or
previous connection setup attempt, the local Provider generates a
DAT_CONNECTION_EVENT_NON_PEER_REJECTED event on
the Endpoint connect_evd_handle. The Endpoint transitions into a
Disconnected state, flushes all preposted DTOs if EP is not
associated with SRQ and leaves preposted Recv buffers on SRQ
otherwise, and no Transport-specific Connection Request is
generated for the remote side. The Provider should avoid this
scenario by allocating an underlying Transport Endpoint that is ready
to be connected.

• When a peer acceptance is received by the Provider, the response
can require Transport-dependent actions to complete the Connection
establishment (such as sending an RTU under InfiniBand). The
Provider must generate a Connection Established Event on the
connect_evd_handle of the Endpoint as the Endpoint transitions to
the Connected State.

If the local Consumer called dat_ep_disconnect prior to or during the
time when the Provider is receiving or processing remote
acceptance, the Provider can either hide the receive of acceptance
from the Consumer (connection never established), or present to the
Consumer that a connection was established and then torn down.
The Consumer must be prepared for both situations: receiving only
Disconnected event or receiving Connection Established event
followed by a Disconnect one. In either case, the Endpoint ends up in
a Disconnected state and all preposted DTOs are completed or
 Page 186

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

flushed except recv buffers posted to SRQ associated with EP that
remains on SRQ unless they have been dequeue by the EP prior to
disconnect or an error.

The second use of an Unconnected Endpoint is to use it when accepting
a Pending Connection Request. This follows the Public Service Point
usage model where the Consumer manages its Unconnected Endpoints.
It has the following steps:

• The accept method (dat_cr_accept) on the previously uncorrelated
Pending Connection Request transitions the Endpoint directly to the
Provider’s internal but potentially Consumer-visible Completion
Pending state for the Endpoint.

• In the Endpoint Completion Pending state, the Provider takes
whatever Transport-specific actions are required to complete the
Connection establishment, and then waits for the Transport-specific
events to confirm the connection. For InfiniBand, this state is waiting
for the active side Provider to send an RTU. Under other transports,
this state can be empty or nonexistent.

• When Transport-required actions are completed successfully
(connection completed), the Connection Established Event is
generated on the connect_evd_handle of the Endpoint as the
Endpoint transitions to the Connected state.

• Alternately, if any error occurs in the specific steps required to
complete the connection (for example, active side timed out,
Transport error, no IB RTU message), a Connection Completion
Error Event must be generated on the connect_evd_handle of the
Endpoint as the Endpoint transitions into a Disconnected state and
flushes all preposted DTOs if EP is not associated with SRQ and
leaves preposted Recv buffers on SRQ otherwise.

If the requesting Endpoint cannot be connected to the requested
remote side because of the Transport-specific remnants of the
previous connection (IB TimeWait state) or previous connection
setup attempt, the Provider generates a DAT_CONNECTION_
COMPLETION_ERROR event on the Endpoint connect_evd_
handle. The Endpoint transitions into Disconnected state and flushes
all preposted DTOs if EP is not associated with SRQ and leaves
preposted Recv buffers on SRQ otherwise. Transport-specific
nonpeer rejection is generated for the remote side.

The third use of an Unconnected Endpoint is to attach it to a Reserved
Service Point.

• Create the Endpoint is in the Unconnected state (see the initial
create transition).

• From this state, the Endpoint can be reserved for a Reserved
Service Point by the dat_rsp_create method (rsp.create). This
results in the Endpoint transitioning into the Reserved state.
 Page 187

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• The Reserved state can be exited by releasing the Service Point
(rsp.free), which returns the Endpoint to the Unconnected state.

• Alternately, the Reserved state can be transitioned by arrival of a
Connection Request. When the Connection Request arrives, the
Provider must generate a Connection Request Event on the Event
Dispatcher of the Reserved Service Point before the Endpoint
transitions to the Passive Connection Pending state.

• In the Passive Connection Pending state, the Endpoint waits for the
Consumer to accept (dat_cr_accept) or reject (dat_cr_reject) the
pending Connection Request. If rejected, the Provider must send
whatever Transport-specific rejection message to the peer, and then
transition the Endpoint to the Disconnected state and flushes all
preposted DTOs if EP is not associated with SRQ and leaves
preposted Recv buffers on SRQ otherwise.

• The accept method (dat_cr_accept) on the correlated pending
Connection Request (cr.accept) transitions the Endpoint to the
Provider internal Completion Pending state. The transitions from the
Completion Pending state were described previously.

If the requesting Endpoint cannot be connected to the requested
remote side because of the Transport-specific remnants of the
previous connection (IB TimeWait state) or previous connection
setup attempt, the Provider generates a DAT_CONNECTION_
COMPLETION_ERROR event on the Endpoint connect_evd_
handle. The Endpoint transitions into Disconnected state and flushes
all preposted DTOs if EP is not associated with SRQ and leaves
preposted Recv buffers on SRQ otherwise. Transport-specific
nonpeer rejection is generated for the remote side.

Endpoints can also be created indirectly by the Provider in response to
arrived Connection Requests for Public Service Points. The following
steps follow this model:

• The Endpoint is created by the Provider as the result of the arrival of
a Connection Request.

• This results in the immediate generation of a Connection Requested
Event on the Event Dispatcher of the Public Service Point.

• The created Endpoint is provided to a Consumer in the Tentative
Connection Pending state as a parameter of a pending Connection
Request that is given to the Consumer as part of a Connection
Requested Event.

• Typically, the Consumer needs to modify the Endpoint before
accepting it to assign it to the Consumer-chosen Protection Zone, to
assign Consumer-chosen/created Event Dispatchers (recv_evd_
handle, request_evd_handle, connect_evd_handle), to enable
RDMA operations, and/or to modify any other Endpoint parameters
and attributes.
 Page 188

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• When the Consumer accepts the Connection Request (dat_cr_
accept), the Endpoint is transitioned to the Completion Pending
state, as previously described.

• Alternately, when the Consumer rejects the Connection Request
(dat_cr_reject), the Provider must send a Transport-specific rejection
message, and then the Endpoint is destroyed.

If connection cannot be established for whatever reason, the Endpoint
transitions into a Disconnected state and flushes preposted DTOs if EP is
not associated with SRQ and leaves preposted Recv buffers on SRQ
otherwise are flushed. The only exception to this rule is Passive side
rejection of the Connection Request. This is where the Consumer-created
Endpoint transitions from Passive Connection Pending back into an
Unconnected state, and the Provider-created Endpoint in Tentative
Connection pending state is returned to Provider control and is destroyed
as far as the Consumer is concerned. The Provider is responsible for any
required Transport-specific action and messages.

If The Consumer called dat_ep_disconnect while in Active Request
Pending or Completion Pending Endpoint states, the Endpoint is
transitioned into a Disconnected state. The Provider is responsible for any
Transport-specific actions and messages. If the Consumer does not want
the connection when the Endpoint is in Passive Connection Pending or in
Tentative Connection Pending states, the Consumer should call dat_cr_
reject. That transitions the Endpoint into an Unconnected state for
Passive Connection Pending, or returns the Endpoint back to the
Provider. For the Endpoint in the Reserved state, the Consumer shall call
dat_rsp_free if the Consumer does not want to wait for connection
establishment. dat_ep_disconnect is not supported in Unconnected,
Reserved, Passive Connection Pending, or Tentative Connection
Pending states.

If the Consumer called dat_ep_free while in Active Request Pending or
Completion Pending Endpoint states, the Endpoint is destroyed.
Semantically, this is equivalent to first calling dat_ep_disconnect and then
dat_ep_free. The Provider is responsible for any Transport-specific
actions and messages that need to be generated for the remote side. If
the Endpoint is in Passive Connection Pending or Tentative Connection
Pending states, the Consumer should call dat_cr_reject if the Consumer
does not want the connection. For Reserved state, the Consumer should
first destroy the RSP that transitions the Endpoint into an Unconnected
state where it can be destroyed. dat_ep_free is not supported in
Reserved, Passive Connection Pending, or Tentative Connection
Pending states where the Endpoint is under Provider control.

From the Endpoint Connected state, the Provider responds to a
Consumer’s request to graceful disconnect (dat_ep_
disconnect(graceful)) as follows:
 Page 189

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• The Endpoint is transitioned into Disconnect Pending state. The
Endpoint remains in this state while the Provider is trying to complete
all pending Requests and RMR Binds. Connection being broken, the
local or remote Consumer calling dat_ep_disconnect(abrupt) or dat_
ep_free transitions the Endpoint out of that state.

• If all pending Requests and RMR Binds complete, the Transport-
specific disconnect message is sent to the peer or the designated
Connection Manager.

• The Disconnected Event is generated on the connect_evd_handle of
the Endpoint.

• The Endpoint is transitioned into the Disconnected state.

From the Endpoint Connected or Disconnect Pending state, the Provider
responds to a Consumer’s request to abrupt disconnect (dat_ep_
disconnect(abrupt)) as follows:

• The Transport-specific disconnect message is sent to the peer or the
designated Connection Manager.

• The Disconnected Event is generated on the connect_evd_handle of
the Endpoint.

• The Endpoint is transitioned into the Disconnected state.

There is an inherent race condition between dat_ep_disconnect and the
connection being broken. The Provider shall not generate both
Connection Broken and Disconnected events for the same connection
tear down. The Provider must take whatever Transport-specific action is
required. Regardless of the cause of connection tear down, the Endpoint
transitions into a Disconnected state. The Consumer shall be ready to
receive either Connection Broken or Disconnected events.

From the Endpoint Connected state, the Provider responds to the arrival
of a peer request to disconnect (receive peer disconnect request), as
follows:

• The Disconnected Event is generated on the connect_evd_handle of
the Endpoint if Connection Broken or Disconnected events were not
already generated.

• The Endpoint is transitioned to the Disconnected state.

Upon entering the Disconnected state, the Provider is responsible for
flushing all outstanding DTOs and RMRs except recv buffers posted to
SRQ associated with EP that remains on SRQ unless they have been
dequeue by the EP prior to disconnect or an error and completing in-
progress DTOs and RMRs, preserving completion ordering. The
Consumer can post any DTO and RMR to the Endpoint in the
Disconnected state, but these postings are flushed immediately except
posting Recv DTOs to EP that is associated with SRQ that is not allowed.
The Consumer can use this feature by posting a DTO or an RMR
operation that results in the completion entry for each of the recv_evd_
 Page 190

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

handle, request_evd_handle, and rmr_evd_handle. These completions
can serve as markers, so that when the Consumer dequeues them from
the EVD, there is no more completion on the EVD related to the Endpoint.

From the Endpoint Disconnected state, the Provider responds to a
Consumer dat_ep_reset by transitioning the Endpoint into an
Unconnected state. The dat_ep_reset is a synchronous operation and
does not cause any event generation. The return of a dat_ep_reset
operation might cause the loss of any DTO/RMR completions related to
the Endpoint that were not dequeued by the Consumer. The Provider can
hide any Transport-specific remnants of the previous connection or
connection establishment attempt in this transition.

The Endpoint can be destroyed by the Consumer in any Endpoint state,
except Reserved, Passive Connection Pending, and Tentative
Connection Pending. When the Endpoint is destroyed, any DTO/RMR
completions not dequeued by the Consumer might be lost. This includes
completions for all outstanding and in-progress DTOs/RMRs. The
Consumer must be ready for all completions that were not dequeued yet
either still being on the Endpoint recv_evd_handle, request_evd_handle,
rmr_evd_handle or not being there.

If the Endpoint is in Reserved state, the Consumer shall first destroy the
associated Reserved Service Point that transitions the Endpoint into an
Unconnected state where the Endpoint can be destroyed. If the Endpoint
is in Passive Connection Pending state, the Consumer shall first reject the
associated Connection Request that transitions the Endpoint into an
Unconnected state where the Endpoint can be destroyed. If the Endpoint
is in a Tentative Connection Pending state, the Consumer shall reject the
associated Connection Request that transitions the Endpoint back to
Provider control, and the Endpoint is destroyed as far as the Consumer is
concerned.

When an Endpoint is in a Connected state or in the process of establishing
a Connection, a transport level error might occur. This might happen
because of the violation to the reliability model. The error results in a
Connection Broken Event being generated on the connect_evd_handle of
the Endpoint by the Provider and the Endpoint transitioning into the
Disconnected state. All the posted DTO and RMR Bind operations to the
Endpoint Request Work Queue are automatically flushed by the Provider.
If the EP is not associated with SRQ then posted Recv DTO are also
flushed, and leaves preposted Recv buffers on SRQ otherwise. From the
Disconnected state, the Endpoint can be transitioned into the
Unconnected state via dat_ep_reset, or destroyed via dat_ep_free.

Note that when the violation was a result of a local operation, the
Connection Disconnected Event is in addition to the Error Completion
event. This allows the DAT Consumer to remain ignorant of which errors
cause connection terminations for which types of Endpoints.
 Page 191

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
The only allowed transitions from the Disconnected state is to free/destroy
the Endpoint or transition the Endpoint into the Unconnected state via dat_
ep_reset.

6.6.1.1 ADVICE TO IB IMPLEMENTORS

For IB Providers, the following algorithm can be employed to for Active-
side Providers:

• If the Provider can locally determine that the remote_ia_address is
invalid, or that the remote_ia_address cannot be converted to a
Transport-specific address, generate DAT_INVALID_ADDRESS
return synchronously.

• If remote_ia_address cannot be converted to the IB path, generate
an Unreachable event. This is done if the address cannot be
resolved remotely (say on a switch) by SA or IPoverIB ARP. Nothing
is generated for the remote side.

• Convert local Endpoint IA Address and comm into remote
Connection Qualifier using IBTA RDMA IP CM Service Annex
specification. If remote Connection Qualifier can not be deduced
from the provide information, generate an Unreachable event.
Nothing is generated for the remote side.

• Encode connection addressing information using IBTA RDMA IP CM
Service Annex specification. If an error is discovered during
encoding either return DAT_INVALID_ADDRESS synchronously, or
generate an Unreachable event. Nothing is generated for the remote
side.

• If the remote Consumer accepts the connection before Timeout
expires, and if the remote Endpoint RDMA Read credits match the
local Endpoint, generate a Connection Established event with
Passive-side Consumer passed-in Private Data and generate an
Accept message for the Passive side without any Private Data.

• If the remote Consumer rejects connection, generate a Peer
Rejected event.

• If the remote Provider/CM rejected but not with a redirect reason,
generate a Nonpeer Reject event.

• If the remote side Provider/CM rejected with a redirect reason and
the Consumer Timeout allows time for another remote host specified
in a redirection reason, do so. If not, generate a Nonpeer Reject
event.

• If the Consumer Timeout expires, generate a Timeout event if an
MRA or a reject with redirection reason was received. Also generate
a Reject with Reject reason 4 (timeout) for the remote side.

• If the Consumer Timeout expires, generate an Unreachable event if
an MRA or a reject with redirection reason was not received.
 Page 192

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• If CM timeout expires and remote side have not responded,
generate an Unreachable event.

• The IB CM rejects with Reject codes: 12-17, 24-26, 32. This
corresponds to a Redirect reject. The Provider is responsible for
fixing the Path appropriately to the IB Reject reason and trying to
connect to the specified redirection host if the Consumer Timeout
permits.

• The remote DAPL Provider rejects the connection it may specify
reject reason. For example, RDMA IP CM Service Provider may
indicate badly formed private data. This may indicate a problem with
local DAPL Provider, local RDMA IP CM Service Provider or
Consumer specified arguments.

6.6.2 DEFERRED CONFIGURATION ENDPOINT

The Unconfigured state is entered when an Endpoint is created with an

incomplete configuration. A configuration is deferred if PZ or any of the
EVD references supplied are NULL. This can be done in either of the ways
that a fully configuration-deferred (unconfigured) Endpoint could have
been created:
 Page 193

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
• By a Consumer directly creating the Endpoint. If not fully specified
this results in the Unconfigured-Unreserved sub-state.

• By the Provider creating an Endpoint for a tentative connection (and
delivering it with a Connection Request). This results in the
Unconfigured-Tentative sub-state.

While EP is configuration-deferred any attempt to initiate a connection
(dat_ep_connect) or accept a connection (dat_cr_accept) with the
Endpoint will be rejected.

An Unconfigured Endpoint may be freed.

An Unconfigured Endpoint may be referenced in a newly created RSP
(dat_rsp_create). This transitions the Endpoint from the Unconfigured-
Unreserved sub-state to the Unconfigured-Reserved sub-state.

As with any Endpoint claimed by an RSP, an Unconfigured-Reserved
Endpoint will reject an attempt to delete it (dat_ep_free).

While in the Unconfigured-Reserved substate, a Connection Request for
the RSP can be received. This results in generating the Connection
Request Event and transitioning the Endpoint to the Unconfigured-
Passive Pending sub-state.

In the Unconfigured-Passive Pending sub-state the Connection Request
can be rejected. This results in freeing the RSP, just as would have
happened with a fully configured Endpoint. Note that the Connection
Request cannot be accepted while the Endpoint is deferred configuration.

If dat_cr_handoff is issued on the Endpoint in Unconfigured-Passive
Pending sub-state or Unconfigured-Tentative sub-state then Endpoint
transitions into Unconfigured state.

A dat_ep_modify that completes the EVD's configuration (i.e, there are no
remaining NULL references to PZ or EVDs) will transition out of the
Unconfigured state. The resulting state depends on the current sub-state
of the Endpoint:

• From Unconfigured-Unreserved to Unconnected
• From Unconfigured-Reserved to Reserved
• From Unconfigured-Passive Pending to Passive Connection

Pending
• From Unconfigured-Tentative to Tentative Connection Pending

In all cases the result of fully configuring the Endpoint is to be in the same
state that it would have been had it been fully configured when it was
created.

There is no transition from Configured Endpoint to Unconfigured one.
 Page 194

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.3 CONNECTION ESTABLISHMENT MODELS

DAT defines the following methods by which a connection can be
established for the passive side:

• Using a Public Service Point with Consumer-allocated Endpoints.
• Using a Public Service Point with Provider-allocated Endpoints.
• Using a Reserved Service Point.
• Using a Common Service Point

This section describes when and why each model is used.

Regardless of which model is used when the Consumer accepts a
Connection Request, it is notified by the Provider that the connection is
established by receiving DAT_CONNECTION_EVENT_ESTABLISHED
on the connect_evd_handle of the Endpoint on which the connection is
accepted.

6.6.3.1 USING A PUBLIC SERVICE POINT WITH CONSUMER-ALLOCATED ENDPOINTS

Public Service Points are used when the passive-side Consumer intends
to accept connections from a wide audience of possible clients. The
invitation to connect remains in place until explicitly removed by
destroying the Public Service Point.

Consumer-allocated Endpoints should be used except when the Provider
attributes specify that the Provider must create the Endpoint, which might
be the Transport requirement. It must be used if the Provider indicates that
it never creates Endpoints.

Consumer-allocated Endpoints can be created and fully configured before
the Connection Request is received. This is especially optimal when the
service has been preconfigured to support a specific peak number of
Connections. If n are to be accepted at peak, n preconfigured Endpoints
are placed in a pool. When one is available, the Connection Request is
accepted with the next free Unconnected Endpoint. When none are
available, the Connection Request is rejected by the Consumer.

The Consumer should check Provider attributes or Provider
documentation before creating an Endpoint pool. There is no reason to
create a pool if the Provider insists on allocating all Endpoints.

The Consumer can choose to create the Endpoints in response to
Connection Requests. One advantage of this approach is that it can be
implemented without advance checking of Endpoint parameters. When a
Connection Request is received, the Consumer checks to see whether an
Endpoint was supplied. If none was, it creates it with the desired
characteristics; otherwise, it modifies it to have the desired
characteristics.
 Page 195

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.3.2 USING A PUBLIC SERVICE POINT WITH PROVIDER-ALLOCATED ENDPOINTS

Public Service Points can also be used with Provider-allocated Endpoints.
There are two potential reasons for using Provider-allocated Endpoints:

• The Provider insists on it. This is the case whenever RDMA services
are defined over an existing transport layer, such as with iWARP. A
non-RDMA Connection is established automatically before the
RDMA layers are invoked. That connection must then be modified to
enable RDMA.

• The attributes for Endpoints cannot be easily predicted in advance. If
the Endpoints have to be modified, a single Provider pool is more
efficient that multiple Consumer pools or creating Endpoints for each
Connection Request.

When using a Provider-allocated Endpoint, the Consumer must modify it
before accepting the Connection Request. As delivered by the Provider,
the Endpoint does not have a valid Protection Zone or Event Dispatchers
assigned.

After a Consumer accepts a Connection Request, it becomes the owner
of the Endpoint regardless of whether the f connection setup is successful.
When the connection is eventually torn down, the Endpoint transitions into
a Disconnected state. However it is not destroyed until the Consumer
does so explicitly (or closes the IA handle).

6.6.3.3 USING A RESERVED SERVICE POINT

A Reserved Service Point allows the Consumer to supply a single
preconfigured Endpoint for accepting a single connection. This is typically
used to create auxiliary connections in an already established session.
Protocols such as FTP, RTSP, and DAFS can negotiate additional
connections using a primary connection established with a Public Service
Point.

Reserved Service Points can also be used to establish peer-to-peer
connections when the active/passive roles are not appropriate to the
relationship between the two parties.

Typically, an Endpoint is fully configured before the Reserved Service
Point is created. It could then just be accepted without modifications. If
rejected, the Endpoint should either be destroyed or returned to whatever
pool the Consumer allocated it from.

6.6.3.4 USING A COMMON SERVICE POINT

This model is analogous to the PSP model with the Consumer create
Endpoints. The main difference that Common Service Points have all the
parameters of the platform socket. This simplifes an integration of the
RDMA connection model with the networking one. This allows ULP to use
the existing model for ULP service advertisement, IP ports, and protocol
simulation support.
 Page 196

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.3.5 MIXING CONNECTION MODELS

It is recommended not to mix the connection models on two sides of the
connection. So for common connection model use CSP, dat_ep_
common_connect together with setting up connecting Endpoints comm,
and local IA_Address, and for others use PSP and RSP and dat_ep_
connect with inheriting addressing information from the IA.

6.6.4 DAT_EP_CREATE

Synopsis: DAT_RETURN

dat_ep_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_EVD_HANDLE recv_evd_handle,

IN DAT_EVD_HANDLE request_evd_handle,

IN DAT_EVD_HANDLE connect_evd_handle,

IN DAT_EP_ATTR *ep_attributes,

OUT DAT_EP_HANDLE *ep_handle

)

Parameters:
ia_handle: Handle for an open instance of the IA to which the

created Endpoint belongs.

pz_handle: Handle for an instance of the Protection Zone.

recv_evd_handle: Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are
reported. DAT_HANDLE_NULL specifies that the
Consumer is not interested in events for
completions of receives.

request_evd_handle: Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write,
RDMA Read, and RMR Bind) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer
is not interested in events for completions of
requests.

connect_evd_handle: Handle for the Event Dispatcher where Connection
events are reported. DAT_HANDLE_NULL
specifies that the Consumer is not interested in
connection events for now.

ep_attributes: Pointer to a structure that contains Consumer-
requested Endpoint attributes. Can be NULL.

ep_handle: Handle for the created instance of an Endpoint.
 Page 197

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_ep_create creates an instance of an Endpoint that is provided to the
Consumer as ep_handle. The value of ep_handle is not defined if the
value of DAT_RETURN is not DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

Protection Zone pz_handle allows Consumers to control what local
memory the Endpoint can access for DTOs and what memory remote
RDMA operations can access over the connection of a created Endpoint.
Only memory referred to by LMRs and RMRs that match the Endpoint
Protection Zone can be accessed by the Endpoint.

recv_evd_handle and request_evd_handle are Event Dispatcher
instances where the Consumer collects completion notifications of DTOs.
Completions of Receive DTOs are reported in recv_evd_handle Event
Dispatcher, and completions of Send, RDMA Read, and RDMA Write
DTOs are reported in request_evd_handle Event Dispatcher. All
completion notifications of RMR bindings are reported to a Consumer in
request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the
Consumer through connect_evd_handle Event Dispatcher.

The ep_attributes parameter specifies the initial attributes of the created
Endpoint. If the Consumer specifies NULL, the Provider fills it with its
default Endpoint attributes. The Consumer might not be able to do any
posts to the Endpoint or use the Endpoint in connection establishment until
certain Endpoint attributes are set. Maximum Message Size and
Maximum Recv DTOs are examples of such attributes.

For max_recv_dtos, max_request_dtos, max_recv_iov, and max_
request_iov the created Endpoint will have at least the Consumer
requested values but may have larger values. Consumer can query the
created Endpoint to find out the actual values for these attributes. Created
Endpoint has the exact Consumer requested values for max_message_
size, max_rdma_size, max_rdma_read_in, and max_rdma_read_out. For
all other attributes the created Endpoint has the exact values requested by
Consumer. If Provider cannot satisfy the Consumer requested attribute
values the operation fails.

dat_ep_create is synchronous and thread safe.

Returns
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle.
 Page 198

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.4.1 USAGE

The Consumer creates an Endpoint prior to the establishment of a
connection. The created Endpoint is in DAT_EP_STATE_
UNCONNECTED. Consumers can do the following:

1) Request a connection on the Endpoint through dat_ep_connect or
dat_ep_dup_connect for the active side of the connection model.

2) Associate the Endpoint with the Pending Connection Request that
does not have an associated local Endpoint for accepting the
Pending Connection Request for the passive/server side of the con-
nection model.

3) Create a Reserved Service Point with the Endpoint for the
passive/server side of the connection model. Upon arrival of a Con-
nection Request on the Service Point, the Consumer accepts the
Pending Connection Request that has the Endpoint associated with
it.

The Consumer cannot specify a request_evd_handle (recv_evd_handle)
with Request Completion Flags (Recv Completion Flags) that do not
match the other Endpoint Completion Flags for the DTO/RMR completion
streams that use the same EVD. If request_evd_handle (recv_evd_
handle) is used for an EVD that is fed by any event stream other than DTO
or RMR completion event streams, only DAT_COMPLETION_
THRESHOLD is valid for Request/Recv Completion Flags for the
Endpoint completion streams that use that EVD. If request_evd_handle
(recv_evd_handle) is used for request (recv) completions of an Endpoint
whose associated Request (Recv) Completion Flag attribute is DAT_
COMPLETION_UNSIGNALLED_FLAG, the Request Completion Flags
and Recv Completion Flags for all Endpoint completion streams that use
the EVD must specify the same. Analogously, if recv_evd_handle is used
for recv completions of an Endpoint whose associated Recv Completion
Flags attribute is DAT_COMPLETION_SOLICITED_WAIT, the Recv
Completion Flags for all Endpoint Recv completion streams that use the
same EVD must specify the same Recv Completion Flags attribute value
and the EVD cannot be used for any other event stream types.

If EP is created with NULL attributes, Provider can fill them with its own
default values. The Consumer should not rely on the Provider-filled

DAT_INVALID_PARAMETER Invalid parameter; One of the
requested EP parameters or
attributes was invalid or a
combination of attributes or
parameters is invalid. For example,
requested maximum RDMA Read
IOV exceeds IA capabilities.

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was
not supported.
 Page 199

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
attribute defaults, especially for portable applications. The Consumer
cannot do any operations on the created Endpoint except for dat_ep_
query, dat_ep_get_status, dat_ep_modify, and dat_ep_free, depending on
the values that the Provider picks.

The Provider is encouraged to pick up reasonable defaults because
unreasonable values might restrict Consumers to the dat_ep_query, dat_
ep_get_status, dat_ep_modify, and dat_ep_free operations. The
Consumer should check what values the Provider picked up for the
attributes. It is especially important to make sure that the number of posted
operations is not too large to avoid EVD overflow. Depending on the
values picked up by the Provider, the Consumer might not be able to do
any RDMA operations; it might only be able to send or receive messages
of very small sizes, or it might not be able to have more than one segment
in a buffer. Before doing any operations, except the ones listed above, the
Consumer can configure the Endpoint using dat_ep_modify to the
attributes they want.

One reason the Consumer might still want to create an Endpoint with Null
attributes is for the Passive side of the connection establishment, where
the Consumer sets up Endpoint attributes based on the connection
request of the remote side.

Consumers might want to create Endpoints with NULL attributes if
Endpoint properties are negotiated as part the Consumer connection
establishment protocol.

Consumers that create Endpoints with Provider default attributes should
always verify that the Provider default attributes meet their application’s
requirements with regard to the number of request/receive DTOs that can
be posted, maximum message sizes, maximum request/receive IOV
sizes, and maximum RDMA sizes.

6.6.4.2 RATIONALE

Note to Provider: The Provider is strongly encouraged to create an EP
that is ready to be connected. This means that any effects of previous
connections or connection establishment attempts on the underlying
Transport-specific Endpoint to which the DAT Endpoint is mapped to
should be hidden from the Consumer. There are multiple ways to do that.
The methods described below are examples of it:

• The Provider does not create an underlying Transport Endpoint until
the Consumer is connecting the Endpoint or accepting a connection
request on it. This allows the Provider to accumulate Consumer
requests for attribute settings even for attributes that the underlying
transport does not allow to change after the Transport Endpoint is
created. On the negative side, handling of dat_ep_post_recv
becomes much harder.
 Page 200

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• The Provider creates the underlying Transport Endpoint or chooses
one from a pool of Provider-controlled Transport Endpoints when the
Consumer creates the Endpoint. The Provider chooses the
Transport Endpoint that is free from any underlying internal attributes
that might prevent the Endpoint from being connected. For IB and IP,
that means that the Endpoint is not in the TimeWait state. Handling
of dat_ep_post_recv becomes a simple map to the Transport post.
Changing of some of the Endpoint attributes becomes hard and
might potentially require mapping the Endpoint to another underlying
Transport Endpoint that might not be feasible for all transports.

• The Provider allocates a Transport-specific Endpoint without
worrying about impact on it from previous connections or connection
establishment attempts. Hide the Transport-specific TimeWait state
or CM timeout of the underlying transport Endpoint within dat_ep_
connect, dat_ep_dup_connect, or dat_cr_accept. On the Active side
of the connection establishment, if the remnants of a previous
connection for Transport-specific Endpoint can be hidden within the
Timeout parameter, do so. If not, generating DAT_CONNECTION_
EVENT_NON_PEER_REJECTED is an option. For the Passive
side, generating a DAT_CONNECTION_COMPLETION_ERROR
event locally, while sending a non-peer-reject message to the active
side, is a way of handling it.

Any transitions of an Endpoint into an Unconnected state can be handled
similarly. One transition from a Disconnected to an Unconnected state is
a special case.

For dat_ep_reset, the Provider can hide any remnants of the previous
connection or failed connection establishment in the operation itself.
Because the operation is synchronous, the Provider can block in it until
the TimeWait state effect of the previous connection or connection setup
is expired, or until the Connection Manager timeout of an unsuccessful
connection establishment attempt is expired. Alternatively, the Provider
can create a new Endpoint for the Consumer that uses the same handle.

6.6.4.3 MODEL IMPLICATIONS

DAT Providers are required not to change any Consumer-specified
Endpoint attributes during connection establishment. If the Consumer
does not specify an attribute, the Provider can set it to its own default.
Some EP attributes, like outstanding RDMA Read incoming or outgoing,
if not set up by the Consumer, can be changed by Providers to establish
connection. It is recommended that the Provider pick the default for
outstanding RDMA Read attributes as 0 if the Consumer has not specified
them. This ensures that connection establishment does not fail due to
insufficient outstanding RDMA Read resources, which is a requirement for
the Provider.

Provider is not required to check for a mismatch between the maximum
RDMA Read IOV and maximum RDMA Read outgoing attributes, but is
 Page 201

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
allowed to do so. In the later case it is allowed to return DAT_INVALID_
PARAMETER when a mismatch is detected. Provider must allocate
resources to satisfy the combination of these two EP attributes for local
RDMA Read DTOs.

6.6.5 DAT_EP_CREATE_WITH_SRQ

Synopsis: DAT_RETURN

dat_ep_create_with_srq (

IN DAT_IA_HANDLE ia_handle,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_EVD_HANDLE recv_evd_handle,

IN DAT_EVD_HANDLE request_evd_handle,

IN DAT_EVD_HANDLE connect_evd_handle,

IN DAT_SRQ_HANDLE srq_handle,

IN DAT_EP_ATTR *ep_attributes,

OUT DAT_EP_HANDLE *ep_handle

)

Parameters:
ia_handle: Handle for an open instance of the IA to which the

created Endpoint belongs.

pz_handle: Handle for an instance of the Protection Zone.

recv_evd_handle: Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are
reported. DAT_HANDLE_NULL specifies that the
Consumer is not interested in events for
completions of receives.

request_evd_handle: Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write,
RDMA Read, and RMR Bind) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer
is not interested in events for completions of
requests.

connect_evd_handle: Handle for the Event Dispatcher where Connection
events are reported. DAT_HANDLE_NULL
specifies that the Consumer is not interested in
connection events for now.

srq_handle: Handle for an instance of the Shared Receive
Queue.

ep_attributes: Pointer to a structure that contains Consumer-
requested Endpoint attributes. Cannot be NULL.

ep_handle: Handle for the created instance of an Endpoint.
 Page 202

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_ep_create_with_srq creates an instance of an Endpoint that is using
SRQ for Recv buffers is provided to the Consumer as ep_handle. The
value of ep_handle is not defined if the value of DAT_RETURN is not
DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

Protection Zone pz_handle allows Consumers to control what local
memory the Endpoint can access for DTOs except Recv and what
memory remote RDMA operations can access over the connection of a
created Endpoint. Only memory referred to by LMRs and RMRs that
match the Endpoint Protection Zone can be accessed by the Endpoint.
The Recv DTO buffers PZ must match the SRQ PZ. The SRQ PZ may or
may not be the same as the EP PZ. Check Provider attribute for the
support of different PZs between SRQ and its EPs.

recv_evd_handle and request_evd_handle are Event Dispatcher
instances where the Consumer collects completion notifications of DTOs.
Completions of Receive DTOs are reported in recv_evd_handle Event
Dispatcher, and completions of Send, RDMA Read, and RDMA Write
DTOs are reported in request_evd_handle Event Dispatcher. All
completion notifications of RMR bindings are reported to a Consumer in
request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the
Consumer through connect_evd_handle Event Dispatcher.

Shared Receive Queue srq_handle specifies from where the EP will
dequeue Recv DTO buffers.

The created EP can be reset. The relationship between SRQ and EP is
not effected by dat_ep_reset.

SRQ cannot be disassociated or replaced from created EP. The only way
to disassociate SRQ from EP is to destroy EP.

Receive buffers cannot be posted to the created Endpoint. Receive
buffers must be posted to the SRQ to be used for the created Endpoint.

The ep_attributes parameter specifies the initial attributes of the created
Endpoint. Consumer cannot specify NULL for ep_attributes but can
specify values only for the parameters needed and default for the rest.

For max_request_dtos and max_request_iov the created Endpoint will
have at least the Consumer requested values but may have larger values.
Consumer can query the created Endpoint to find out the actual values for
these attributes. Created Endpoint has the exact Consumer requested
values for max_recv_dtos, max_message_size, max_rdma_size, max_
rdma_read_in, and max_rdma_read_out. For all other attributes, except
max_recv_iov that is ignored, the created Endpoint has the exact values
requested by Consumer. If Provider cannot satisfy the Consumer
requested attribute values the operation fails.

dat_ep_create_with_srq is synchronous and thread safe.
 Page 203

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Returns

6.6.5.1 USAGE

The Consumer creates an Endpoint prior to the establishment of a
connection. The created Endpoint is in DAT_EP_STATE_
UNCONNECTED. Consumers perform one of the following actions:

1) Request a connection on the Endpoint through dat_ep_connect or
dat_ep_dup_connect for the active side of the connection model.

2) Associate the Endpoint with the Pending Connection Request that
does not have an associated local Endpoint for accepting the Pending
Connection Request for the passive/server side of the connection
model.

3) Create a Reserved Service Point with the Endpoint for the
passive/server side of the connection model. Upon arrival of a Con-
nection Request on the Service Point, the Consumer accepts the
Pending Connection Request that has the Endpoint associated with it.

The Consumer cannot specify a request_evd_handle (recv_evd_handle)
with Request Completion Flags (Recv Completion Flags) that do not
match the other Endpoint Completion Flags for the DTO/RMR completion
streams that use the same EVD. If request_evd_handle (recv_evd_
handle) is used for request (recv) completions of an Endpoint whose
associated Request (Recv) Completion Flag attribute is DAT_
COMPLETION_UNSIGNALLED_FLAG, the Request Completion Flags
and Recv Completion Flags for all Endpoint completion streams that use
the EVD must specify the same Completion Flag values. Recall that by
definition completions of all Recv DTO posted to SRQ complete with
Signal. Analogously, if recv_evd_handle is used for recv completions of an
Endpoint whose associated Recv Completion Flag attribute is DAT_
COMPLETION_SOLICITED_WAIT, the Recv Completion Flags for all
Endpoint Recv completion streams that use the same EVD must specify

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_PARAMETER Invalid parameter; One of the
requested EP parameters or
attributes was invalid or a
combination of attributes or
parameters is invalid. For example,
pz_handle specified does not match
the one for SRQ or requested
maximum RDMA Read IOV
exceeds IA capabilities.

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was
not supported.
 Page 204

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

the same Recv Completion Flags attribute value and the EVD cannot be
used for any other event stream types. If recv_evd_handle is used for
Recv completions of an Endpoint that uses SRQ and whose Recv
Completion Flag attribute is DAT_COMPLETION_EVD_THRESHOLD
then all Endpoint DTO completion streams (request and/or recv
completion streams) that use that recv_evd_handle must specify DAT_
COMPLETION_EVD_THRESHOLD. Other event stream types can also
use the same EVD.

Consumers may want to use DAT_COMPLETION_UNSIGNALLED_
FLAG for Request and/or Recv completions when they control locally via
posted DTO/RMR completion flag (not needed for Recv posted to SRQ)
whether posted DTO/RMR completes with Signal or not. Consumers may
want to use DAT_COMPLETION_SOLICITED_WAIT for Recv
Completion Flags attribute when the remote sender side controls whether
posted Recvs complete with Signal or not. uDAPL Consumers may want
to use DAT_COMPLETION_EVD_THRESHOLD for Request and/or
Recv Completion Flags attributes when they control EVD waiter
unblocking via threshold parameter of the dat_evd_wait.

Some Providers may restrict whether multiple EPs that share a SRQ can
have different Protection Zones (see srq_ep_pz_difference_support
Provider attribute).

Consumers may want to have a different PZ between EP and SRQ. This
allows incoming RDMA operations to be specific to this EP PZ and not the
same for all EPs that share SRQ. This is critical for servers that support
multiple independent clients.

6.6.5.2 RATIONALE

Note to Provider: The Provider is strongly encouraged to create an EP
that is ready to be connected. This means that any effects of previous
connections or connection establishment attempts on the underlying
Transport-specific Endpoint to which the DAT Endpoint is mapped should
be hidden from the Consumer. There are multiple ways to do that. Several
methods for hiding these effects described below.

• The Provider does not create an underlying Transport Endpoint until
the Consumer is connecting the Endpoint or accepting a connection
request on it. This allows the Provider to accumulate Consumer
requests for attribute settings, including attributes that the underlying
transport does not allow to change after the Transport Endpoint is
created.

• The Provider creates the underlying Transport Endpoint or chooses
one from a pool of Provider-controlled Transport Endpoints when the
Consumer creates the Endpoint. The Provider chooses the
Transport Endpoint that is free from any underlying internal attributes
that might prevent the Endpoint from being connected. For IB and IP,
that means that the Endpoint is not in the TimeWait state. Changing
 Page 205

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
of some of the Endpoint attributes becomes difficult and might
potentially require mapping the Endpoint to another underlying
Transport Endpoint. This might not be feasible for all transports.

• The Provider allocates a Transport-specific Endpoint without
considering about impact on it from previous connections or
connection establishment attempts. Hide the Transport-specific
TimeWait state or CM timeout of the underlying transport Endpoint
within dat_ep_connect, dat_ep_dup_connect, or dat_cr_accept. On
the Active side of the connection establishment, if the remnants of a
previous connection for Transport-specific Endpoint can be hidden
within the Timeout parameter, do so. If not, generating DAT_
CONNECTION_EVENT_NON_PEER_REJECTED is an option. For
the Passive side, one option is enerating a DAT_CONNECTION_
COMPLETION_ERROR event locally, while sending a non-peer-
reject message to the active side.

Any transitions of an Endpoint into an Unconnected state can be handled
similarly. One transition from a Disconnected to an Unconnected state is
a special case.

For dat_ep_reset, the Provider can hide any remnants of the previous
connection or failed connection establishment in the operation itself.
Because the operation is synchronous, the Provider can block in it until the
TimeWait state effect of the previous connection or connection setup is
expired, or until the Connection Manager timeout of an unsuccessful
connection establishment attempt is expired. Alternatively, the Provider
can create a new Endpoint for the Consumer that uses the same handle.

6.6.5.3 MODEL IMPLICATIONS

DAT Providers are required not to change any Consumer-specified
Endpoint attributes during connection establishment. If the Consumer
does not specify an attribute, the Provider can set it to its own default.
Some EP attributes, such as outstanding RDMA Read incoming or
outgoing, if they are not set up by the Consumer can be changed by
Providers to establish connection. It is recommended that the Provider
pick the default for outstanding RDMA Read attributes as 0 if the
Consumer has not specified them. This ensures that connection
establishment does not fail due to insufficient outstanding RDMA Read
resources, which is a requirement for the Provider.

Provider is not required to check for a mismatch between the maximum
RDMA Read IOV and maximum RDMA Read outgoing attributes, but is
allowed to do so. In the later case it is allowed to return DAT_INVALID_
PARAMETER when a mismatch is detected. Provider must allocate
resources to satisfy the combination of these two EP attributes for local
RDMA Read DTOs.
 Page 206

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.6 ENDPOINT ATTRIBUTES

The list of Endpoint attributes is as follows:

Service Type: For uDAPL-2.0, the only allowed type is
Reliable Connection (for requirements, see
the reliability model discussion on page 41. In
the future, other types can be defined.

Max_Message_Size: Requested maximum message transfer size
for the Connection on the Endpoint. The
MaxMessageSize specifies the maximum
amount of payload data that can be
transferred in a single DTO send/receive
message in either direction of the Connection
on the Endpoint.

Max_RDMA_Size: Requested maximum RDMA transfer size for
the Connection on the Endpoint. The Max_
RDMA_Size specifies the maximum amount
of payload data that can be transferred in a
single RDMA DTO initiated by the Endpoint in
either direction of the Connection on the
Endpoint.

QoS: Quality of Service of the Connection on the
Endpoint.

Recv Completion Flags: Indicator of support for Completion
Notification of posted receive operations.
DAT_COMPLETION_SOLICITED_WAIT_
FLAG indicates that Notifications of the
posted Receive DTOs are controlled by DAT_
COMPLETION_SOLICITED_WAIT_FLAG
value of the matching Send. DAT_
COMPLETION_UNSIGNALLED_FLAG
indicates that Notifications of the posted
Recvs are explicitly controlled by the
Consumer via posted Recvs Notification
Suppression flag value. The default value for
EPs that use SRQ is DAT_COMPLETION_
UNSIGNALLED_FLAG which means that all
Recv buffers posted to SRQ will complete
with Signal Notification. DAT_COMPLETION_
EVD_THRESHOLD_FLAG indicates that all
Recv completions are generated with
Notifications and Consumer controls
unblocking of the EVD waiters via threshold of
the associated EVD. This attribute is local and
has no effect on the remote side of the
connection or on connection establishment.
 Page 207

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Request Completion Flags: Indicator of support for Completion
Notifications of posted outgoing operations.
DAT_COMPLETION_UNSIGNALLED_FLAG
indicates that Notification of the posted Send,
RDMA Read, RDMA Write, and RMR Bind
are explicitly controlled by Consumer via
posted operation Notification Suppression flag
value. DAT_COMPLETION_EVD_
THRESHOLD_FLAG indicates that all posted
Send, RDMA Read, RDMA Write, and RMR
Bind operation completions are generated
with Notifications and Consumer controls
unblocking of the EVD waiters via threshold of
the associated EVD. This attribute is local and
has no effect on the remote side of the
connection or on connection establishment.

Max_Recv_DTOs: Maximum number of outstanding Consumer-
submitted Receive DTOs that a Consumer
expects at any one time at the Endpoint. If
SRQ is associated with the EP then this
attribute specifies the hard high watermark
limit for the number of Recv buffers consumed
by the EP from SRQ. When EP tries to
exceed this limit the connection will be
broken. If Provider does not support hard limit
high watermark then the value of DAT_HW_
DEFAULT must be specified, otherwise, dat_
ep_create_with_srq will fail with DAT_
MODEL_NOT_SUPPORTED.

Max_Request_DTOs: Maximum number of outstanding Consumer-
submitted Send, RDMA Read, RDMA Write
DTOs, and RMR Binds combined that the
Consumer expects at any one time at the
Endpoint.

Max_Recv_IOV: Maximum number of elements in IOV that the
Consumer specifies for a posted Receive
DTO for the Endpoint. If SRQ is associated
with EP then this value is ignored for create
and modify operations. For query this value
will return 0 if SRQ is associated with EP.

Max_Request_IOV: Maximum number of elements in IOV that the
Consumer specifies for a posted Send DTO,
or RMR Bind for the Endpoint.

Max_RDMA_Read_in Maximum number of outstanding RDMA
Reads that have the Endpoint as the target.

Max_RDMA_Read_out Maximum number of outstanding RDMA
Reads that have the Endpoint as the
originator.
 Page 208

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Both soft and hard High Watermarks are attributes of an Endpoint and
allow Consumer to control the behavior of the individual connection.
When multiple connections take buffers from the same SRQ if one or
several connections take all the buffers from SRQ, a connection that uses
SRQ will be broken when a message arrives and there is no Recv buffer
for it based on the definition of reliable connection.

The High Watermark allows Consumer to monitor and control the
behavior of connections. When an Endpoint takes more Recv buffers from
SRQ or EP RQ then is expected as specified by Soft High Watermark,
Consumer will be notified by an event on IA asynchronous EVD. If an
Endpoint takes more Recv buffers from SRQ or EP RQ than it is expected
as specified by Hard High Watermark, EP connection will be broken and
Consumer will be notified by an event on EP connect_evd. It is expected

soft_high_watermark The soft high watermark is the number of
buffers consumed by the EP. When EP
exceeds this number an event will be
generated on IA async_evd. If the Provider
does not support soft limit high watermark
then the value of DAT_HW_DEFAULT must
be specified, otherwise, dat_ep_create_with_
srq will fail with DAT_MODEL_NOT_
SUPPORTED.

Max_RDMA_Read_IOV: Maximum number of elements in IOV that the
Consumer specifies for a posted RDMA Read
DTO for the Endpoint.

Max_RDMA_Write_IOV: Maximum number of elements in IOV that the
Consumer specifies for a posted RDMA Write
DTO for the Endpoint.

Num transport attributes: Number of transport-specific Endpoint
attributes.

Transport-specific attributes: Array of transport-specific Endpoint attributes.
Each entry has the format of DAT_NAMED_
ATTR, which is a structure with two elements.
The first element is the name of the attribute,
and the second is the value of the attribute as
a string.

Num provider attributes: Number of provider-specific Endpoint
attributes.

Provider-specific attributes: Array of provider-specific Endpoint attributes.
Each entry has the format of DAT_NAMED_
ATTR, which is a structure with two elements.
The first element is the name of the attribute,
and the second is the value of the attribute as
a string.
 Page 209

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
that Soft High Watermark will be smaller than Hard High Watermark to give
Consumer a chance to take action before the connection is broken.

If Consumer is not concern about Soft, Hard or both High Watermarks, the
value of DAT_WATERMARK_INFINITE can be specified. This guarantees
that no event will be generated. But the connection will be broken if a
message arrives and no Recv buffer is available based on the definition of
reliable connection.

6.6.6.1 USAGE

6.6.6.2 RATIONALE

When underlying RDMA transport and implementation supports multiple
messages in progress over the same connection, all recv buffers for that
connection can be consumed even without a single completion being
generated for them. This applies to EP whether or not it is associated with
SRQ.

For an Endpoint associated with SRQ srq_soft_high_watermark attribute
allows Consumers to find out when the Endpoint has more buffers
consumed without generating completions for them than the requested
value for srq_soft_high_watermark. For transports that support multiple
outstanding Sends in progress, such as iWARP, this information is critical
to detect rogue connections that consume too many buffers, thus,
depriving other connections sharing the SRQ of receive buffers. This lack
of buffers may lead to connection break up. Consumer may not be able to
remedy the situation since new Receive buffers cannot be posted since
there is no room on SRQ. The buffers consumed by EPs may still be
outstanding so there is no room on SRQ for new posting. However,
completion for consumed SRQ receive buffers cannot be generated since
the earlier posted Sends have not been received by an Endpoint that
consumed too many buffers. The only real remedy Consumer has for this
situation is to break the rogue connection. Notice that more than one
connection may be in this situation.

For the EP that do not use SRQ the impact of too many arriving messages
is not as great since the damage in the worst case will break only the rogue
connection and will not impact other connections.

For an Endpoint associated with SRQ Max_Recv_DTOs allows Consumer
to avoid control the above described situation by breaking a rogue
connection that consumed more than Max_Recv_DTOs from SRQ.

6.6.6.3 MODEL IMPLICATION

Be aware that definitions of High Watermarks have some flexibility. It is
clear that the high watermark checks are done when Recv buffer is taken
from SRQ. However, it is left open when recv buffer is no longer counted
against EP buffers. It can be counted when completion is generated for
Recv buffer, when completion is queued on recv_evd, when completion is
removed from recv_evd, or some time in between them.
 Page 210

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Remote Consumer should not send more messages than it is suppose to.
The number of posted Sends can be controlled via ULP flow control. The
remote Consumer shall expect the same behavior regardless if local side
uses SRQ or not. Thus, when more messages are sent than expected,
remote Consumer shall be ready for the connection to be broken. But
remote Consumer shall not rely on the connection to be broken when they
exceed the limit.

For local Consumer it means that the connection will definitely break, but
it may not break if the number of incoming messages is below the high
hard watermark even with many completions on the Recv EVD.

6.6.7 ENDPOINT STATES

The list of Endpoint States and allowed EP operations is as follows:

Endpoint State Description Allowed Endpoint
Operations

Unconnected Endpoint is ready to be used for connection
setup or Reserved Service Point.

dat_ep_connect, dat_ep_
common_connect, dat_ep_dup_
connect, dat_ep_free, dat_ep_
reset, (and dat_cr_accept)

Unconfigured Endpoint is created in configuration deferred
state and is not ready to be used. It misses
one EVDs or PZ.

dat_ep_free

Active Request Pending Endpoint is in use for Active side of
connection establishment and a Connection
Request was issued on it. No action is
required by the Consumer to get the Endpoint
out of this state.

dat_ep_disconnect, dat_ep_free

Reserved Endpoint is associated with Reserved Service
Point. No action is required by the Consumer
to get the Endpoint out of this state.

Unconfigured Reserved Deferred configuration Endpoint is associated
with Reserved Service Point. Endpoint is not
ready to be used. It misses one EVD or PZ.
Consumer can modify the Endpoint so it is
configured or the Endpoint can transition into
Passive Connection Pending upon
Connection Request arrival.

Passive Connection
Pending

The Connection Request was received on the
Endpoint-associated Reserved Service Point.

Unconfigured Passive
Connection Pending

The Connection request was received on the
Unconfigured Reserved Endpoint. Deferred
configuration Endpoint is not ready to be
used. It misses one EVD or PZ. Consumer
can modify the Endpoint so it is configured
and ready to accept the Connection Request.

(dat_cr_reject, dat_cr_handoff)
 Page 211

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_ep_query, dat_ep_get_status, dat_ep_modify, and dat_ep_post_recv
can be called on the Endpoint in any state.

6.6.7.1 USAGE

6.6.7.2 RATIONALE

Note to Provider: Upon connection establishment attempt failure for any
reason, the Endpoint transitions into the Disconnected state and all
preposted Recvs are flushed.

For IB, it is the semantic defined by the IBTA spec, as the Disconnected
state is mapped to the Error state in IB. For iWARP, the Endpoint remains
in the Unoperational state, but the Provider can transition the Endpoint

Unconfigured Tentative
Connection Pending

Provider-allocated Endpoint is associated with
a received Connection Request on the
Passive side of Connection Establishment.
Endpoint is deferred configuration and is not
ready to be used. It misses one EVD or PZ.
Consumer can modify the Endpoint so it is
configured and ready to accept the
Connection Request.

(dat_cr_reject, dat_cr_handoff)

Tentative Connection
Pending

Provider-allocated Endpoint is associated with
a received Connection Request on the
Passive side of Connection Establishment,
that has been configured by the Consumer via
dat_ep_modify.

dat_ep_modify, (dat_cr_reject,
dat_cr_handoff, dat_cr_accept)

Completion Pending Transport -dependent state on the Passive
side of the connection establishment when
the Consumer accepts a Connection Request
on the Endpoint and the Provider is
completing Transport-specific steps of
Connection establishment. No action is
required from the Consumer to get the
Endpoint out of this state.

dat_ep_disconnect, dat_ep_free

Connected Endpoint is Connected to a remote Endpoint
and data can be transferred between them.

dat_ep_disconnect, dat_ep_free,
dat_ep_post_send, dat_ep_post_
rdma_read, dat_ep_post_rdma_
write (and dat_rmr_bind)

Disconnect Pending Endpoint was gracefully disconnected by the
Consumer and is completing outstanding and
in-progress posted DTOs and RMRs. No
action is required by the Consumer to get the
Endpoint out of this state.

dat_ep_disconnect, dat_ep_free

Disconnected Endpoint is not associated with a remote
Endpoint.

dat_ep_disconnect, dat_ep_reset,
dat_ep_free, dat_ep_post_send,
dat_ep_post_rdma_read, dat_ep_
post_rdma_write (and dat_rmr_
bind)
 Page 212

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

itself into the iWARP QP Error state, which causes any preposted DTOs
and RMRs to be flushed. For VI, the Endpoint transitions back into Idle
state, but the Provider can call VipDisconnect, which causes preposted
Recvs to be flushed. The Disconnected state is mapped to the Idle state
of VI.

To support posting in a Disconnected state, the following strategy can be
employed:

For IB, the post semantics supports posting in the Error state; these
postings are flushed. For iWARP, the Provider can transition QP into Idle
state, then post the requested DTO or RMR, and then transition the QP
back into Error state. That causes the posted DTO or RMR to be flushed.
If underlying QP is already in Idle state then post DTO and transition it into
Error state. That will cause DTOs, RMRs to be flushed. Transiting QP
back into Idle state completes the transformation and returns QP into
starting state. For VI, Recv can be posted, followed by VipDisconnect. For
any request posting, the Provider needs to generate flushed completions
themselves without involving any posts.

The dat_ep_reset is mapped directly to IB and iWARP qp_modify that
transition QP into Idle/Reset/Initialized state. For VI, the Provider
internally changes its perception of the same Idle state. After reset, the
Recv posting shall remain posted and other postings return with the
immediate error of Invalid state.

6.6.7.3 MODEL IMPLICATIONS

When setting the Error sub-type for Invalid State, the state supplied is the
current state of the Endpoint. The rationale is that the error happened
because the application was confused which state it was in.

6.6.8 DAT_EP_FREE

Synopsis: DAT_RETURN

dat_ep_free (

IN DAT_EP_HANDLE ep_handle

)

Parameters:

Description: dat_ep_free destroys an instance of the Endpoint.

The Endpoint can be destroyed in any Endpoint state except Reserved,
Passive Connection Pending, and Tentative Connection Pending. The
destruction of the Endpoint can also cause the destruction of DTOs and
RMRs posted to the Endpoint and not dequeued yet. This includes
completions for all outstanding and in-progress DTOs/RMRs. The

ep_handle: Handle for an instance of the Endpoint.
 Page 213

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Consumer must be ready for all completions that are not dequeued yet
either still being on the Endpoint recv_evd_handle and request_evd_
handle or not being there.

The destruction of the Endpoint during connection setup aborts
connection establishment.

If the Endpoint is in the Reserved state, the Consumer shall first destroy
the associated Reserved Service Point that transitions the Endpoint into
the Unconnected state where the Endpoint can be destroyed. If the
Endpoint is in the Passive Connection Pending state, the Consumer shall
first reject the associated Connection Request that transitions the
Endpoint into the Unconnected state where the Endpoint can be
destroyed. If the Endpoint is in the Tentative Connection Pending state,
the Consumer shall reject the associated Connection Request that
transitions the Endpoint back to Provider control, and the Endpoint is
destroyed as far as the Consumer is concerned.

The freeing of an Endpoint also destroys an Event Stream for each of the
associated Event Dispatchers.

The operation is synchronous and successful return of the operation
indicated that the Endpoint is in Unconnected state. No connection event
will be generated locally for the Endpoint on behalf of this operation.

It is illegal to use the destroyed handle in any subsequent operation.

dat_ep_free is synchronous and non-thread safe.

Returns:

6.6.8.1 USAGE

6.6.8.2 RATIONALE

6.6.8.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state. The
Endpoint is in DAT_EP_STATE_
RESERVED, DAT_EP_STATE_
PASSIVE_CONNECTION_
PENDING, or DAT_EP_STATE_
TENTATIVE_CONNECTION_
PENDING.
 Page 214

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.9 DAT_EP_GET_STATUS

Synopsis: DAT_RETURN

dat_ep_get_status (

IN DAT_EP_HANDLE ep_handle,

OUT DAT_EP_STATE *ep_state,

OUT DAT_BOOLEAN *recv_idle,

OUT DAT_BOOLEAN *request_idle

)

Parameters:

Description: dat_ep_get_status provides the Consumer a quick snapshot of the
Endpoint: The snapshot consists of the Endpoint state and whether there
are outstanding or in-progress, incoming or outgoing DTOs. Incoming
DTOs consist of Receives. Outgoing DTOs consist of the Requests, Send,
RDMA Read, RDMA Write, and RMR Bind.

ep_state returns the value of the current state of the Endpoint ep_handle.
State value is one of the following (as defined in Appendix A.4): DAT_EP_
STATE_UNCONNECTED, DAT_EP_STATE_RESERVED, DAT_EP_
STATE_PASSIVE_CONNECTION_PENDING, DAT_EP_STATE_
ACTIVE_CONNECTION_PENDING, DAT_EP_STATE_TENTATIVE_
CONNECTION_PENDING, DAT_EP_STATE_CONNECTED, or DAT_
EP_STATE_DISCONNECT_PENDING, DAT_EP_STATE_
DISCONNECTED.

recv_idle value of DAT_TRUE specifies that there are no outstanding or
in-progress Receive DTOs at the Endpoint, and DAT_FALSE otherwise. If
SRQ is associated with the EP then the return value of recv_idle is
undefined.

request_idle value of DAT_TRUE specifies that there are no outstanding
or in-progress Send, RDMA Read, and RDMA Write DTOs, and RMR
Binds at the Endpoint, and DAT_FALSE otherwise.

This call provides a snapshot of the Endpoint status only. No heroic
synchronization with DTO queuing or processing is implied.

dat_ep_get_status is synchronous and thread safe.

ep_handle: Handle for an instance of the Endpoint.

ep_state: Current state of the Endpoint.

recv_idle: Status of the incoming DTOs on the Endpoint.

request_idle: Status of the outgoing DTOs and RMR Bind operations
on the Endpoint.
 Page 215

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Returns:

6.6.9.1 USAGE

6.6.9.2 RATIONALE

6.6.9.3 MODEL IMPLICATIONS

6.6.10 DAT_EP_QUERY

Synopsis: DAT_RETURN

dat_ep_query (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_PARAM_MASK ep_param_mask,

OUT DAT_EP_PARAM *ep_param

)

Parameters:

Description: dat_ep_query provides the Consumer parameters, including attributes
and status, of the Endpoint. Consumers pass in a pointer to Consumer-
allocated structures for Endpoint parameters that the Provider fills.

ep_param_mask allows Consumers to specify which parameters to query.
The Provider returns values for ep_param_mask requested parameters.
The Provider can return values for any other parameters.

Some of the parameters only have values for certain Endpoint states.
Specifically, the values for remote_ia_address and remote_port_qual are
valid only for Endpoints in the DAT_EP_STATE_PASSIVE_
CONNECTION_PENDING, DAT_EP_STATE_ACTIVE_CONNECTION_
PENDING, DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,
DAT_EP_STATE_DISCONNECT_PENDING, DAT_EP_STATE_
COMPLETION_PENDING, or DAT_EP_STATE_CONNECTED states.
The value of local_port_qual is valid only for Endpoints in the DAT_EP_
STATE_PASSIVE_CONNECTION_PENDING, DAT_EP_STATE_
ACTIVE_CONNECTION_PENDING, DAT_EP_STATE_DISCONNECT_
PENDING, DAT_EP_STATE_COMPLETION_PENDING, or DAT_EP_
STATE_CONNECTED states, and may be valid for DAT_EP_STATE_
UNCONNECTED, DAT_EP_STATE_RESERVED, DAT_EP_STATE_

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

ep_handle: Handle for an instance of the Endpoint.

ep_param_mask: Mask for Endpoint parameters.

ep_param: Pointer to a Consumer-allocated structure that the
Provider fills with Endpoint parameters.
 Page 216

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

TENTATIVE_CONNECTION_PENDING, DAT_EP_STATE_PASSIVE_
CONNECTION_PENDING, and DAT_EP_STATE_UNCONNECTED
states.

If SRQ is not associated with EP then returned srq_handle is DAT_
HANDLE_NULL and srq_soft_hw is DAT_HW_DEFAULT, if requested. If
SRQ is associated with EP then returned srq_soft_hw, max_recv_dtos
are as assigned and max_recv_iov is 0, if requested. If hard high
watermark and/or soft hard watermark is not supported by Provider then
the returned value for them is DAT_HW_DEFAULT.

dat_ep_query is synchronous. Its thread safety is Provider-dependent.

Returns:

6.6.10.1 USAGE

6.6.10.2 RATIONALE

6.6.10.3 MODEL IMPLICATIONS

6.6.11 DAT_EP_RECV_QUERY

Synopsis: DAT_RETURN

dat_ep_recv_query (

IN DAT_EP_HANDLE ep_handle,

OUT DAT_COUNT *nbufs_allocated,

OUT DAT_COUNT *bufs_alloc_span

)

Parameters:

Description: dat_ep_recv_query provides to the Consumer a snapshot for Recv
buffers on EP. The values for nbufs_allocated and bufs_alloc_span are
not defined if the value of DAT_RETURN is not DAT_SUCCESS.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; ep_param_mask
is invalid.

ep_handle: Handle for an instance of the EP.

nbufs_allocated: The number of buffers at the EP for which completions
have not been generated yet.

bufs_alloc_span: The span of buffers that EP needs to complete arriving
messages.
 Page 217

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Provider may choose not to support nbufs_allocated, bufs_alloc_span or
both. Check Provider attribute for EP Recv info support for it. When
Provider does not support either of these counts then the return value the
operation can be DAT_MODEL_NOT_SUPPORTED.

If nbufs_allocated is not NULL, then the count nbufs_allocated will return
a snapshot count of the number of buffers allocated to ep_handle but not
yet completed.

Once a buffer has been allocated to an EP it will be completed to the EP
recv_evd if the EVD has not overflown. When an EP does not use SRQ a
buffer is allocated as soon as it is posted to the EP. For an EP that uses
SRQ a buffer is allocated to the EP when the EP removes it from SRQ.

If bufs_alloc_span is not NULL, then the count bufs_alloc_span will return
the span of buffers allocated to the ep_handle. The span is the number of
additional successful Recv completions that EP can generate if all the
messages it is currently receiving complete successfully.

If a message sequence number is assigned to all received messages, the
buffer span is the difference between the latest message sequence
number of an allocated buffer minus the latest message sequence number
for which completion has been generated. This sequence number only
counts Send messages of remote Endpoint of the connection.

The Message Sequence Number (MSN) represents the order that send
messages were submitted by the remote Consumer. The ordering of
sends is intrinsic to the definition of a reliable service. Therefore every
send message does have an MSN whether or not the native transport has
a field with that name.

For both nbufs_allocated and bufs_alloc_span the Provider may return the
reserved value DAT_VALUE_UNKNOWN if it cannot obtain the requested
count at a reasonable cost.

dat_ep_recv_query is synchronous. Its thread safety is Provider-
dependent.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 218

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.11.1 USAGE

6.6.11.2 RATIONALE

6.6.11.3 MODEL IMPLICATIONS

If Provider cannot support query for nbufs_allocated or bufs_alloc_span
then the value returned for that attribute must be DAT_VALUE_
UNKNOWN.

Note that for iWarp there already is a valid Message Sequence Number
in the message header.

An implementation that processes incoming packets out of order, and
which allocates from SRQs on an arrival basis, can have gaps in the
MSNs associated with buffers allocated to an Endpoint.

For example: suppose Endpoint X has received buffer fragments for
MSNs 19, 22 and 23. With arrival ordering the EP would have allocated
three buffers from the SRQ for messages 19, 22 and 23. The number
allocated would be 3, but the span would be 5.

The extra two represents the buffers that will have to be allocated for
messages 20 and 21. They have not been allocated yet, but messages 22
and 23 will not be delivered until after messages 20 and 21 have not only
had their buffers allocated but have also completed.

An implementation may choose to allocate 20 and 21 as soon as any
higher buffer is allocated. If you presume that this is a valid connection this
makes sense, because obviously 20 and 21 are in flight.

However, it creates a greater vulnerability to Denial Of Service attacks.
There are also other implementation tradeoffs, which is why the
Consumer should accept that different RNICs for iWARP will employ
different strategies on when to do these allocations.

Each implementation will have some method of tracking the receive
buffers already associated with an EP, and knowing which buffer matches
which incoming message. However, those methods may vary.

In particular, there are valid implementations such as linked lists, where a
count of the outstanding buffers is not instantly available. Such
implementations would have to scan the allocated list to determine both
the number of buffers and their span.

If such a scan is necessary, it is important that it be only a single scan.
That is, the set of buffers that was counted must be the same set of buffers
for which the span is reported.

The implementation should not scan twice, first to count the buffers and
then again to determine their span. Not only it is inefficient, but it may
produce inconsistent results if buffers were completed or arrived between
the two scans.

Other implementations may simply maintain counts of these values in
should be updated and referenced in atomically.
 Page 219

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
In either case the implementation must never report n buffers in a span
that is less than n.

6.6.12 DAT_EP_MODIFY

Synopsis: DAT_RETURN

dat_ep_modify (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_PARAM_MASK ep_param_mask,

IN DAT_EP_PARAM *ep_param

)

Parameters:

Description: dat_ep_modify provides the Consumer a way to change parameters of an
Endpoint.

ep_param_mask allows Consumers to specify which parameters to
modify. Providers modify values for ep_param_mask requested
parameters only.

Not all the parameters of the Endpoint can be modified. Some can be
modified only when the Endpoint is in a specific state. Table 5 specifies
which parameters can be changed and when.

ep_handle: Handle for an instance of the Endpoint.

ep_param_mask: Mask for Endpoint parameters.

ep_param: Pointer to the Consumer-allocated structure that
contains Consumer-requested Endpoint parameters.

Table 5 Modifiable Endpoint Parameters

Parameter/Attribute States when modify allowed Description

Interface Adapter None Endpoint belongs to an open instance
of IA and that association cannot be
changed.

Endpoint State None State of Endpoint cannot be changed
by a dat_ep_modify operation.

Communicator Unconnected, Unconfigured The Communicator can be assigned
only once. It can only be changed if
previous value of pointer to
Communicator is NULL.
 Page 220

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Local IA Address Unconnected, Unconfigured Local IA can be modified for a
Consumer controlled Endpoint prior to
its use for the connection
establishment. Platform rules are
applicable to local IA Addresses. For
example, use of the “privileged” ports.

Local Port Qualifier None Local port qualifier cannot be changed
by a dat_ep_modify operation. It can
be changed indirectly by modifying
Local IA Address.

Remote IA Address None Remote IA Address cannot be
changed by a dat_ep_modify
operation.

Remote Port Qualifier None Remote port qualifier cannot be
changed by a dat_ep_modify
operation.

Protection Zone Quiescent state,
Unconnected, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Protection Zone can be changed only
when the Endpoint is in quiescent
state. The Endpoint states that are
quiescent are DAT_EP_STATE_
UNCONNECTED and DAT_EP_
STATE_TENTATIVE_CONNECTION_
PENDING. Consumers should be
aware that any Receive DTOs
currently posted to the Endpoint that
do not match the new Protection Zone
fail with a DAT_PROTECTION_
VIOLATION return.

In DTO Event Dispatcher Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Event Dispatcher for incoming DTOs
(Receive) can be changed only prior to
a request for a connection for an
Active side or prior to accepting a
Connection Request for a Passive
side.

Out DTO Event
Dispatcher

Unconnected, Reserved, Passive
Connection Pending, and Tentative
Connection Pending, Unconfigured,
Unconfigured Reserved, Unconfigured
Passive Connection Pending, and
Unconfigured Tentative Connection Pending

Event Dispatcher for outgoing DTOs
(Send, RDMA Read, and RDMA Write)
can be changed only prior to a request
for a connection for an Active side or
prior to accepting a Connection
Request for a Passive side.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description
 Page 221

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Connection Event
Dispatcher

Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Event Dispatcher for the Endpoint
Connection events can be changed
only prior to a request for a connection
for an Active side or accepting a
Connection Request for a Passive
side.

Shared Receive Queue None SRQ cannot be changed.

Service Type Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Service Type can be changed only
prior to a request for a connection for
an Active side or accepting a
Connection Request for a Passive
side.

Maximum Message Size Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum Message Size can be
changed only prior to a request for a
connection for an Active side or
accepting a Connection Request for a
Passive side.

Maximum RDMA Size Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum RDMA Size can be changed
only prior to a request for a connection
for an Active side or accepting a
Connection Request for a Passive
side.

Quality of Service Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

QoS can be changed only prior to a
request for a connection for an Active
side or accepting a Connection
Request for a Passive side.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description
 Page 222

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Recv Completion Flags Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Recv Completion Flags specifies what
DTO flags the Endpoint should support
for Receive DTO operations. The
value can be DAT_COMPLETION_
NOTIFICATION_SUPPRESS_FLAG,
DAT_COMPLETION_SOLICITED_
WAIT_FLAG, or DAT_COMPLETION_
EVD_THRESHOLD_FLAG. Recv
posting does not support DAT_
COMPLETION_SUPPRESS_FLAG or
DAT_COMPLETION_BARRIER_
FENCE_FLAG dat_completion_flags
values that are only applicable to
Request postings. Recv Completion
Flags can be changed only prior to a
request for a connection for an Active
side or accepting a Connection
Request for a Passive side, but before
posting of any Recvs.

Request Completion
Flags

Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Request Completion Flags specifies
what DTO flags the Endpoint should
support for Send, RDMA Read, RDMA
Write, and RMR Bind operations. The
value can be: DAT_COMPLETION_
UNSIGNALLED_FLAG or DAT_
COMPLETION_EVD_THRESHOLD_
FLAG. Request postings always
support DAT_COMPLETION_
SUPPRESS_FLAG, DAT_
COMPLETION_SOLICITED_WAIT_
FLAG, or DAT_COMPLETION_
BARRIER_FENCE_FLAG
completion_flags values. Request
Completion Flags can be changed only
prior to a request for a connection for
an Active side or accepting a
Connection Request for a Passive
side.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description
 Page 223

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Maximum Recv DTO Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum Recv DTO specifies the
maximum number of outstanding
Consumer-submitted Receive DTOs
that a Consumer expects at any time
at the Endpoint. Maximum Recv DTO
can be changed only prior to a request
for a connection for an Active side or
accepting a Connection Request for a
Passive side.
If SRQ is associated with EP then
Maximum Recv DTO represents Hard
High Watermark and it cannot be
modified by dat_ep_modify.
Consumers should use dat_ep_set_
watermark operation instead. An
attempt to modify this attribute for EP
with SRQ will result in DAT_INVALID_
PARAMETER.

Maximum Request DTO Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum Request DTO specifies the
maximum number of outstanding
Consumer-submitted send and RDMA
DTOs and RMR Binds that a
Consumer expects at any time at the
Endpoint. Maximum Out DTO can be
changed only prior to a request for a
connection for an Active side or
accepting a Connection Request for a
Passive side.

Maximum Recv IOV Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum Recv IOV specifies the
maximum number of elements in IOV
that a Consumer specifies for posting
a Receive DTO for the Endpoint.
Maximum Recv IOV can be changed
only prior to a request for a connection
for an Active side or accepting a
Connection Request for a Passive
side.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description
 Page 224

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Maximum Request IOV Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum Request IOV specifies the
maximum number of elements in IOV
that a Consumer specifies for posting
a Send, RDMA Read, or RDMA Write
DTO for the Endpoint. Maximum
Request IOV can be changed only
prior to a request for a connection for
an Active side or accepting a
Connection Request for a Passive
side.

Maximum outstanding
RDMA Read as target

Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum number of outstanding
RDMA Reads for which the Endpoint is
the target.

Maximum outstanding
RDMA Read as
originator

Unconnected, Reserved, Passive
Connection Pending, Tentative Connection
Pending, Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Maximum number of outstanding
RDMA Reads for which the Endpoint is
the originator.

Soft High Watermark All If SRQ is not associated with EP then
Soft Hard Watermark cannot be
changed. Soft High Watermark cannot
be modified by dat_ep_modify.
Consumers should use dat_ep_set_
watermark operation instead. An
attempt to modify this attribute will
result in DAT_INVALID_PARAMETER.

Num transport-specific
attributes

Quiescent state
(unconnected), Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Number of transport-specific attributes
to be modified.

Transport-specific
endpoint attributes

Quiescent state
(unconnected), Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Transport-specific attributes can be
modified only in the transport-defined
Endpoint state. The only guaranteed
safe state in which to modify transport-
specific Endpoint attributes is the
quiescent state DAT_EP_STATE_
UNCONNECTED.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description
 Page 225

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Endpoints without SRQ max_recv_dtos, max_request_dtos, max_recv_
iov, and max_request_iov will have at least the Consumer requested
values but may have larger values. Endpoints with SRQ max_request_
dtos and max_request_iov will have at least the Consumer requested
values but may have larger values. Consumer can query the Endpoint to
find out the actual values for these attributes. The Endpoint has the exact
Consumer requested values for max_message_size, max_rdma_size,
max_rdma_read_in, and max_rdma_read_out. For all other attributes the
created Endpoint has the exact values requested by Consumer. If Provider
cannot satisfy the Consumer requested attribute values the operation fails.

dat_ep_modify is synchronous. Its thread safety is Provider-dependent.

Returns:

6.6.12.1 USAGE

Note to Provider: Upon connection establishment attempt failure for any
reason, the Endpoint transitions into the Disconnected state and all

Num provider-specific
attributes

Quiescent state
(unconnected), Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

 Number of Provider-specific attributes
to be modified.

Provider-specific
endpoint attributes

Quiescent state
(unconnected), Unconfigured, Unconfigured
Reserved, Unconfigured Passive
Connection Pending, and Unconfigured
Tentative Connection Pending

Provider-specific attributes can be
modified only in the Provider-defined
Endpoint state. The only guaranteed
safe state in which to modify Provider-
specific Endpoint attributes is the
quiescent state DAT_EP_STATE_
UNCONNECTED.

Table 5 Modifiable Endpoint Parameters (Continued)

Parameter/Attribute States when modify allowed Description

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter; ep_param_mask
is invalid, or one of the requested
Endpoint parameters or attributes
was invalid, not supported, or
cannot be modified.

DAT_INVALID_STATE Parameter in an invalid state. The
Endpoint was not in the state that
allows one of the parameters or
attributes to be modified.
 Page 226

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

preposted Recvs are flushed with one exception: Recv DTOs posted to
SRQ associated with EP but not yet allocated to an EP remain unaffected.

For IB, it is the semantic defined by the IBTA spec, as the Disconnected
state is mapped to the Error state in IB. For iWARP, the Endpoint remains
in the Unoperational state, but the Provider can transition the Endpoint
itself into the iWARP QP Error state. This causes any preposted DTOs
and RMRs to be flushed, except Recv DTOs posted to SRQ associated
with EP but not yet allocated to an EP, which remain unaffected. If
underlying QP is already in Idle state then post DTO and transition QP into
the Error state. This causes DTOs and RMRs to be flushed. Transiting QP
back into Idle state completes the transformation and returns QP into
starting state. If underlying QP is in Error state then posting to it causes
DTOs and RMRs to be flushed automatically. For VI, the Endpoint
transitions back into Idle state, but the Provider can call VipDisconnect,
which causes preposted Recvs to be flushed. The Disconnected state is
mapped to the Idle state of VI.

To support posting in a Disconnected state, the following strategy can be
employed:

For IB, the post semantics supports posting in the Error state; these
postings are flushed except Recv DTOs posted to SRQ associated with
EP but not yet allocated to an EP which remain unaffected. For iWARP,
the Provider can transition QP into Idle state, then post the requested
DTO or RMR, and then transition the QP back into Error state. If
underlying QP is in Error state then posting to it causes DTOs and RMRs
to be flushed automatically. That causes the posted DTO or RMR to be
flushed. For VI, Recv can be posted, followed by VipDisconnect. For any
request posting, the Provider needs to generate flushed completions
themselves without involving any posts.

The dat_ep_reset is mapped directly to IB and iWARP qp_modify that
transition QP into Idle/Reset/Initialized state. For VI, the Provider
internally changes its perception of the same Idle state. After reset, the
Recv posting shall remain posted and other postings return with the
immediate error of Invalid state. Note that for SRQ Recv buffers are not
effected by dat_ep_reset and they remain on SRQ.

For the common connection model Consumer should define
Communicator and local IA_Address for the Common Service Point and
to an Endpoint prior to requsting its connection. This follows the platform
convension for the socket IP Addresses, domains, types and protocols.

6.6.12.2 RATIONALE

6.6.12.3 MODEL IMPLICATIONS

It is up to the Provider to ensure that Consumer specified comm and IA
Address are valid and that IA can support them. For example, Provider
can restrict what IP Addresses can be used for IA but belonging to an IA
range defined by an administrator.
 Page 227

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.13 DAT_EP_SET_WATERMARK

Synopsis: DAT_RETURN

dat_ep_set_watermark (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT soft_high_watermark,

IN DAT_COUNT hard_high_watermark

)

Parameters:

Description: dat_ep_set_watermark sets the soft and hard high watermark values for
EP and arms EP for generating asynchronous events for high watermarks.
An asynchronous event will be generated for IA async_evd when the
number of Recv buffers at EP is above the soft high watermark for the first
time. A connection broken event will be generated for EP connect_evd
when this may happen during the call or when EP takes a buffer from the
SRQ or EP RQ. The soft and hard high watermark asynchronous event
generation and setting are independent from each other.

The asynchronous event for soft high watermark will be generated only
once per setting. Once an event is generated no new asynchronous
events for the soft high watermark will generated again until the EP is set
for the soft high watermark again. If Consumer wants to generate the
event again Consumer should set the soft high watermark again.

If Consumer is not interested in soft or hard high watermark the value of
DAT_WATERMARK_INFINITE can be specified for that case which is the
default value. It specifies that no asynchronous event will be generated for
high watermark EP attribute for which this value is set. It does not prevent
generation of connection broken events for EP when no Recv buffer is
available for a message arrived on the EP connection.

The operation is supported for all states of Endpoint.

dat_ep_set_watermark is synchronous. Its thread safety is Provider
dependent.

ep_handle: Handle for an instance of an Endpoint.

soft_high_
watermark

The soft high watermark for the number of Recv
buffers consumed by the Endpoint.

hard_high_
watermark

The hard high watermark for the number of Recv
buffers consumed by the Endpoint.
 Page 228

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Returns:

6.6.13.1 USAGE

For hard high watermark the Provider is ready to generate a connection
broken event as soon as the connection is established.

If the asynchronous event for soft or hard high watermark has not been
generated yet then this call modifies the values for these attributes. The
Provider remains “armed” for a generation of these asynchronous event.

6.6.13.2 RATIONALE

6.6.13.3 MODEL IMPLICATIONS

Regardless of whether or not an asynchronous event for the soft and hard
high watermark has been generated this operation will set the generation
of an asynchronous event with the Consumer-provided high watermark
values. If the new high watermark values are below the current number of
Receive DTOs at EP then an asynchronous event will be generated
immediately. Otherwise the old soft or hard or both high watermark values
are simply replaced with the new ones.

6.6.14 DAT_EP_CONNECT

Synopsis: DAT_RETURN

dat_ep_connect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_IA_ADDRESS_PTR remote_ia_address,

IN DAT_CONN_QUAL remote_conn_qual,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data,

IN DAT_QOS qos,

IN DAT_CONNECT_FLAGS connect_flags

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider. Provider
does not support EP Soft or Hard
High Watermarks.

ep_handle: Handle for an instance of an Endpoint.
 Page 229

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_ep_connect requests that a connection be established between the
local Endpoint and a remote Endpoint. This operation is used by the
active/client side Consumer of the Connection establishment model. The
remote Endpoint is identified by Remote IA and Remote Connection
Qualifier.

As part of the successful completion of this operation, the local Endpoint
is bound to a Port Qualifier of the local IA. The Port Qualifier is passed to
the remote side of the requested connection and is available to the remote
Consumer in the Connection Request of the DAT_CONNECTION_
REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is
provided to the remote Consumer in the Connection Request. Consumers
can encapsulate any local Endpoint attributes that remote Consumers
need to know as part of an upper-level protocol. Providers can also
provide a Provider on the remote side any local Endpoint attributes and
Transport-specific information needed for Connection establishment by
the Transport.

remote_ia_address: The Address of the remote IA to which an Endpoint is
requesting a connection.

remote_conn_qual: Connection Qualifier of the remote IA from which an
Endpoint requests a connection.

timeout: Duration of time, in microseconds, that a Consumer
waits for Connection establishment. The value of
DAT_TIMEOUT_INFINITE represents no timeout,
indefinite wait. Values must be positive.

private_data_size: Size of the private_data. Must be nonnegative.

private_data: Pointer to the private data that should be provided to
the remote Consumer as part of the Connection
Request. If private_data_size is zero, then private_
data can be NULL.

qos: Requested quality of service of the connection.

connect_flags: Flags for the requested connection. The default value
is DAT_CONNECT_DEFAULT_FLAG, which is 0. See
Table 6 for flag definitions.

Table 6 Connection Request Flag Definitions

Features Definition/Bit Value Description

MultiPathing DAT_MULTIPATH_FLAG
least significant

0 Consumer does not request multipathing.

1 Consumer requests multipathing.

2 Consumer requires multipathing.
 Page 230

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Upon successful completion of this operation, the local Endpoint is
transferred into DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies
which quality of service it supports in documentation and in the Provider
attributes. If the local Provider or Transport does not support the
requested qos, the operation fails and DAT_MODEL_NOT_SUPPORTED
is returned synchronously. If the remote Provider does not support the
requested qos, the local Endpoint is automatically transitioned into the
DAT_EP_STATE_DISCONNECTED state, the connection is not
established, and the event returned on the connect_evd_handle is DAT_
CONNECTION_EVENT_NON_PEER_REJECTED. The same DAT_
CONNECTION_EVENT_NON_PEER_REJECTED event is returned if
the connection cannot be established for all reasons of not establishing
the connection, except timeout, remote host not reachable, and remote
peer reject. For example, remote Consumer is not listening on the
requested Connection Qualifier, Backlog of the requested Service Point is
full, and Transport errors. In this case, the local Endpoint is automatically
transitioned into DAT_EP_STATE_DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is
reported to the local Consumer through a DAT_CONNECTION_EVENT_
ESTABLISHED event on the connect_evd_handle of the local Endpoint
and the local Endpoint is automatically transitioned into a DAT_EP_
STATE_CONNECTED state.

The rejection of the connection by the remote Consumer is reported to the
local Consumer through a DAT_CONNECTION_EVENT_PEER_
REJECTED event on the connect_evd_handle of the local Endpoint and
the local Endpoint is automatically transitioned into a DAT_EP_STATE_
DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does
not respond within the Consumer requested Timeout, a DAT_
CONNECTION_EVENT_UNREACHABLE event is generated on the
connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

If the Provider can locally determine that the remote_ia_address is invalid,
or that the remote_ia_address cannot be converted to a Transport-
specific address, the operation can fail synchronously with a DAT_
INVALID_ADDRESS return.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_
CONNECTED state when a Connection Request accepted by the remote
Consumer and the Provider completes the Transport-specific Connection
establishment. The local Consumer is notified of the established
connection through a DAT_CONNECTION_EVENT_ESTABLISHED
event on the connect_evd_handle of the local Endpoint.
 Page 231

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
When the timeout expired prior to completion of the Connection
establishment, the local Endpoint is automatically transitioned into a DAT_
EP_STATE_DISCONNECTED state and the local Consumer through a
DAT_CONNECTION_EVENT_TIMED_OUT event on the connect_evd_
handle of the local Endpoint. The timeout of 0 is invalid since connection
cannot be established instantaneously. If timeout=0 is specified the DAT_
INVALID_PARAMETER is returned.

If the local Endpoint does not have a Protection Zone defined or one of its
EVDs is not defined then the operation fails with DAT_INVALID_STATE
return.

connect_flags allows Consumer to specify multipathing information for the
connection. Consumer can request no multipathing, which is the default
value. It can require multipathing, which means that connection should not
be established if only a single path is available. Or multipathing can be
requested, which means that multipathed connection can be established
even if only a single path is available now.

dat_ep_connect is synchronous. Its thread safety is Provider-dependent.

Returns:

6.6.14.1 USAGE

It is up to the Consumer to negotiate outstanding RDMA Read incoming
and outgoing with a remote peer. The outstanding RDMA Read outgoing
attribute should be smaller than the remote Endpoint outstanding RDMA
Read incoming attribute. If this is not the case, Connection establishment
might fail.

DAT API does not define a protocol on how remote peers exchange
Endpoint attributes. The exchange of outstanding RDMA Read incoming

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_ADDRESS Invalid address.

DAT_INVALID_HANDLE Invalid DAT handle; Invalid Endpoint
handle.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in DAT_EP_
STATE_UNCONNECTED state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider. For
example, the requested qos was not
supported by the local Provider.
 Page 232

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

and outgoing attributes of EPs is left to the Consumer ULP. The Consumer
can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or
remote RDMA Read operations on the connection, it can set the two
outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes
of the Endpoint, the Provider is free to pick up any value for default. The
Provider is allowed to change these default values during connection
setup.

6.6.14.2 RATIONALE

uDAPL does not provide an API parameter for a Consumer to bind the
local Endpoint to a specific Port Qualifier. VI do not provide this capability
and uDAPL Consumers do not have such functionality as a requirement.

6.6.14.3 MODEL IMPLICATIONS

Note to Provider: If the Provider can locally determine that the remote_
ia_address is invalid, or that the remote_ia_address cannot be converted
to a Transport-specific address, DAT_INVALID_ADDRESS should be
returned.

Note to Provider: The DAT_CONNECTION_EVENT_UNREACHABLE
event is returned asynchronously by the Provider if it does not have
RDMA Transport connectivity to the remote host specified by remote_ia_
address but cannot determine that locally. Inability to convert the remote_
ia_address into a Transport-specific address should also result in the
same event return. For example, if remote IB SA indicates that there are
no paths between the local IA and the remote IA, this scenario is mapped
to this error. The remote side not responding to the request within the
Consumer-specified Timeout is also mapped to the same event. In
contrast, if the remote side, but not the remote Consumer, is responding,
either a reject or a Message Receipt Acknowledgement is mapped to
DAT_CONNECTION_EVENT_NON_PEER_REJECT.

The Provider is not allowed to fail connection establishment because of
insufficient resources to support the Provider-chosen outstanding RDMA
Read default attributes for the Endpoint.

DAT Providers are required not to change any Consumer-specified
Endpoint attributes. If the Consumer does not specify outstanding RDMA
Read incoming or outgoing attributes, Providers can change them. It is
recommended that the Provider set the outstanding RDMA Read
attributes to 0 if the Consumer has not specified them, to ensure that a
connection establishment does fail due to insufficient local or remote
resources to satisfy local or remote Provider-chosen values for the
outstanding RDMA Read incoming and outgoing for the Endpoint.

If Consumer specified more private data than local Provider supports the
operations fails synchronously with DAT_INVALID_PARAMETER. If local
 Page 233

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Provider support the amount of private data but remote Provider cannot
the remote Provider will pass the truncated private data to the Consumer
and set the truncate_flag in the Connection Request Arrival event.

For the IB transport, Provider shall zero out transport specific private data
fields beyond the Consumer provided private data. This ensures that
remote Provider can detect the extra private data beyond what it can
support.

For iWARP Providers that support IETF MPA both the size of the private
data and the private data shall be mapped into MPA Request frame.

If multipathing was requested and the connection was established in the
degraded mode, the HA event stream will deliver an event when more
than one path becomes available under the connection.

6.6.15 DAT_EP_COMMON_CONNECT

Synopsis: DAT_RETURN

dat_ep_common_connect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_IA_ADDRESS_PTR remote_ia_address,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data

)

Parameters:

Description: dat_ep_common_connect requests that a connection be established
between the local Endpoint and a remote Endpoint specified by the
remote_ia_address. This operation is used by the active/client side
Consumer of the Connection establishment model.

ep_handle: Handle for an instance of an Endpoint.

remote_ia_address: IA_address of the remote endpoint of the requested
connection.

timeout: Duration of time, in microseconds, that a Consumer
waits for Connection establishment. The value of
DAT_TIMEOUT_INFINITE represents no timeout,
indefinite wait. Values must be positive.

private_data_size: Size of the private_data. Must be nonnegative.

private_data: Pointer to the private data that should be provided to
the remote Consumer as part of the Connection
Request. If private_data_size is zero, then private_
data can be NULL.
 Page 234

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

EP must be properly configured for this operation. The EP Communicator
must be specified. As part of the successful completion of this operation,
the local Endpoint is bound to a local IA Address if it had these assigned
before.

The local IP Address, port and protocol are passed to the remote side of
the requested connection and is available to the remote Consumer in the
Connection Request of the DAT_CONNECTION_REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is
provided to the remote Consumer in the Connection Request. Consumers
can encapsulate any local Endpoint attributes that remote Consumers
need to know as part of an upper-level protocol.

Upon successful completion of this operation, the local Endpoint is
transferred into DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

The DAT_CONNECTION_EVENT_NON_PEER_REJECTED event is
returned if the connection cannot be established for all reasons of not
establishing the connection, except timeout, remote host not reachable,
and remote peer reject. In this case, the local Endpoint is automatically
transitioned into DAT_EP_STATE_DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is
reported to the local Consumer through a DAT_CONNECTION_EVENT_
ESTABLISHED event on the connect_evd_handle of the local Endpoint
and the local Endpoint is automatically transitioned into a DAT_EP_
STATE_CONNECTED state.

The rejection of the connection by the remote Consumer is reported to the
local Consumer through a DAT_CONNECTION_EVENT_PEER_
REJECTED event on the connect_evd_handle of the local Endpoint and
the local Endpoint is automatically transitioned into a DAT_EP_STATE_
DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does
not respond within the Consumer requested Timeout, a DAT_
CONNECTION_EVENT_UNREACHABLE event is generated on the
connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_
CONNECTED state when a Connection Request accepted by the remote
Consumer and the Provider completes the Transport-specific Connection
establishment. The local Consumer is notified of the established
connection through a DAT_CONNECTION_EVENT_ESTABLISHED
event on the connect_evd_handle of the local Endpoint.

When the timeout expired prior to completion of the Connection
establishment, the local Endpoint is automatically transitioned into a DAT_
EP_STATE_DISCONNECTED state and the local Consumer through a
DAT_CONNECTION_EVENT_TIMED_OUT event on the connect_evd_
 Page 235

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
handle of the local Endpoint. The timeout of 0 is invalid since connection
cannot be established instantaneously.

If the local Endpoint does not have a Protection Zone defined or one of its
EVDs is not defined then the operation fails with DAT_INVALID_STATE
return.

dat_ep_common_connect is synchronous. Its thread safety is Provider-
dependent. The UpCall safety of the operation is not guaranteed.

Returns:

6.6.15.1 USAGE

It is up to the Consumer to negotiate outstanding RDMA Read incoming
and outgoing with a remote peer. The outstanding RDMA Read outgoing
attribute should be smaller than the remote Endpoint outstanding RDMA
Read incoming attribute. If this is not the case, Connection establishment
might fail.

DAT API does not define a protocol on how remote peers exchange
Endpoint attributes. The exchange of outstanding RDMA Read incoming
and outgoing attributes of EPs is left to the Consumer ULP. The Consumer
can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or
remote RDMA Read operations on the connection, it can set the two
outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes
of the Endpoint, the Provider is free to pick up any value for default. The
Provider is allowed to change these default values during connection
setup.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle; Invalid Endpoint
handle.

DAT_INVALID_STATE Parameter in an invalid state. For
example, endpoint was not in DAT_
EP_STATE_UNCONNECTED state,
or the EP Communicator is not
defined.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 236

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.15.2 RATIONALE

The common model allows Consumer to use a well-known socket
connection model regardless of the underlying RDMA transport. Thus, IP
port can be used instead of transport-dependent Connection Qualifier and
connection is bounded to a specific protocol of a protocol family.

6.6.15.3 MODEL IMPLICATIONS

Note to Provider: The common model allows iWARP Providers to create
sockets ahead of time if Consumer sets comm and IA Address of the EP
prior to connection establishment. Otherwise, an iWARP Provider will
create a socket, bind it and then connect. An IA defaults should be used
for unspecified local EP ia_address. The RDMA connection request must
be mapped into MPA request frame over the socket connection.

For an IB Provider the RDMA IP CM Annex specification shall be used to
support common model. So, the connection request should be sent to the
Connection Qualifier defined by comm and remote_ia_address as
specified by the IBTA RDMA IP CM Annex.

Provider can assign the default IA Address of the IA and some port to the
EP if Consumer does not assigned its local IA Address. Or Provider may
require that the local IA Addres is assigned by the Consumer.

It is up to the Provider to ensure that Consumer specified comm and IA
Address are valid and that IA can support them. For example, Provider
can restrict what IP Addresses can be used for IA but belonging to an IA
range defined by an administrator. This is typically done in dat_ep_modify.

Note to Provider: The remote side not responding to the request within
the Consumer-specified Timeout is mapped to the DAT_CONNECTION_
EVENT_TIMEOUT_EXPIRED. In contrast, if the remote side, but not the
remote Consumer, is responding, either a reject or a Message Receipt
Acknowledgement is mapped to DAT_CONNECTION_EVENT_NON_
PEER_REJECT.

The Provider is not allowed to fail connection establishment because of
insufficient resources to support the Provider-chosen outstanding RDMA
Read default attributes for the Endpoint.

DAT Providers are required not to change any Consumer-specified
Endpoint attributes. If the Consumer does not specify outstanding RDMA
Read incoming or outgoing attributes, Providers can change them. It is
recommended that the Provider set the outstanding RDMA Read
attributes to 0 if the Consumer has not specified them, to ensure that a
connection establishment does fail due to insufficient local or remote
resources to satisfy local or remote Provider-chosen values for the
outstanding RDMA Read incoming and outgoing for the Endpoint.

If Consumer specified more private data than local Provider supports the
operations fails synchronously with DAT_INVALID_PARAMETER. If local
Provider support the amount of private data but remote Provider cannot
 Page 237

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
the remote Provider will pass the truncated private data to the Consumer
and set the truncate_flag in the Connection Request Arrival event.

For the IB transport, Provider shall zero out transport specific private data
fields beyond the Consumer provided private data. This ensures that
remote Provider can detect the extra private data beyond what it can
support.

For iWARP/TCP Providers that support IETF MPA both the size of the
private data and the private data shall be mapped into MPA Request
frame.

Neither the Provider nor RNIC can change the routing of the TCP
connection for socket connection provided by Consumer.

For iWARP/SCTP Providers the size of the private data and the private
data shall be mapped into a DDP Session Initiate message.

We should also note that the iWARP Provider should release the socket
back to the system promptly after the connection is broken. It may do so
earlier if the socket resource is not tied to the TCP connection itself.

When a socket is converted for use by an EP the existing TCP options
should be preserved, except when they are contrary to normal RDMA
operations. For example, iWARP implementations should disable Nagle.
But options such as KEEPALIVE should be used as is whenever
reasonably possible.

6.6.16 DAT_EP_DUP_CONNECT

Synopsis: DAT_RETURN

dat_ep_dup_connect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_EP_HANDLE dup_ep_handle,

IN DAT_TIMEOUT timeout,

IN DAT_COUNT private_data_size,

IN const DAT_PVOID private_data,

IN DAT_QOS qos

)

Parameters:
ep_handle: Handle for an instance of an Endpoint.

dup_ep_handle: Connected local Endpoint that specifies a requested
connection remote end.

timeout: Duration of time, in microseconds, that Consumers
wait for Connection establishment. The value of DAT_
TIMEOUT_INFINITE represents no timeout, indefinite
wait. Values must be positive.
 Page 238

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_ep_dup_connect requests that a connection be established between
the local Endpoint and a remote Endpoint. This operation is used by the
active/client side Consumer of the connection model. The remote
Endpoint is identified by the dup_ep_handle. The remote end of the
requested connection shall be the same as the remote end of the dup_
ep_handle. This is equivalent to requesting a connection to the same
remote IA, Connection Qualifier, and connect_flags as used for
establishing the connection on duplicated Endpoints and following the
same redirections.

As part of the successful completion of this operation, the local Endpoint
is bound to a Port Qualifier of the local IA. The Port Qualifier is passed to
the remote side of the requested connection and is available to the remote
Consumer in the Connection Request of the DAT_CONNECTION_
REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is
provided to the remote Consumer in the Connection Request. Consumers
can encapsulate any local Endpoint attributes that remote Consumers
need to know as part of an upper-level protocol. Providers can also
provide a Provider on the remote side any local Endpoint attributes and
Transport-specific information needed for Connection establishment by
the Transport.

Upon successful completion of this operation, the local Endpoint is
transferred into DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies
which Quality of Service it supports in documentation and in the Provider
attributes. If the local Provider or Transport does not support the
requested qos, the operation fails and DAT_MODEL_NOT_SUPPORTED
is returned synchronously. If the remote Provider does not support the
requested qos, the local Endpoint is automatically transitioned into a
DAT_EP_STATE_DISCONNECTED state, the connection is not
established, and the event returned on the connect_evd_handle is DAT_
CONNECTION_EVENT_NON_PEER_REJECTED. The same DAT_
CONNECTION_EVENT_NON_PEER_REJECTED event is returned if
connection cannot be established for all reasons for not establishing the
connection, except timeout, remote host not reachable, and remote peer
reject. For example, remote Consumer is not listening on the requested
Connection Qualifier, Backlog of the requested Service Point is full, and

private_data_size: Size of private_data. Must be nonnegative.

private_data: Pointer to the private data that should be provided to
the remote Consumer as part of the Connection
Request. If private_data_size is zero, then private_
data can be NULL.

qos: Requested Quality of Service of the connection.
 Page 239

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Transport errors. In this case, the local Endpoint is automatically
transitioned into a DAT_EP_STATE_DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is
reported to the local Consumer through a DAT_CONNECTION_EVENT_
ESTABLISHED event on the connect_evd_handle of the local Endpoint.

The rejection of the connection by the remote Consumer is reported to the
local Consumer through a DAT_CONNECTION_EVENT_PEER_
REJECTED event on the connect_evd_handle of the local Endpoint and
the local Endpoint is automatically transitioned into a DAT_EP_STATE_
DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does
not respond within the Consumer-requested Timeout, a DAT_
CONNECTION_EVENT_UNREACHABLE is generated on the connect_
evd_handle of the Endpoint. The Endpoint transitions into a DAT_EP_
STATE_DISCONNECTED state.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_
CONNECTED state when a Connection Request is accepted by the
remote Consumer and the Provider completes the Transport-specific
Connection establishment. The local Consumer is notified of the
established connection through a DAT_CONNECTION_EVENT_
ESTABLISHED event on the connect_evd_handle of the local Endpoint.

When the timeout expired prior to completion of the Connection
establishment, the local Endpoint is automatically transitioned into a DAT_
EP_STATE_DISCONNECTED state and the local Consumer through a
DAT_CONNECTION_EVENT_TIMED_OUT event on the connect_evd_
handle of the local Endpoint. The timeout of 0 is invalid since connection
cannot be established instantaneously. If timeout=0 is specified the DAT_
INVALID_PARAMETER is returned.

dat_ep_dup_connect is synchronous. Its thread safety is Provider-
dependent.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle or
dup_ep_handle is invalid.

DAT_INVALID_STATE Parameter in an invalid state.

DAT_MODEL_NOT_SUPPORTED The requested Model is not
supported by the Provider. For
example, requested qos was not
supported by the local Provider.
 Page 240

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.16.1 USAGE

It is up to the Consumer to negotiate outstanding RDMA Read incoming
and outgoing with a remote peer. The outstanding RDMA Read outgoing
attribute should be smaller than the remote Endpoint outstanding RDMA
Read incoming attribute. If this is not the case, connection establishment
might fail.

DAT API does not define a protocol on how remote peers exchange
Endpoint attributes. The exchange of outstanding RDMA Read incoming
and outgoing attributes of EPs is left to the Consumer ULP. The Consumer
can use Private Data for it.

If the Consumer does not care about posting RDMA Read operations or
remote RDMA Read operations on the connection, it can set the two
outstanding RDMA Read attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes
of the Endpoint, the Provider is free to pick up any values as a default. The
Provider is allowed to change these default values during connection
setup.

6.6.16.2 RATIONALE

6.6.16.3 MODEL IMPLICATIONS

The Provider is not allowed to fail connection establishment because of
insufficient resources to support the Provider-chosen outstanding RDMA
Read default attributes for the Endpoint.

DAT Providers are required not to change any Consumer-specified
Endpoint attributes. If the Consumer does not specify outstanding RDMA
Read incoming or outgoing attributes, Providers can change them. It is
recommended that the Provider set these outstanding RDMA Read
attributes to 0 if the Consumer has not specified them, to ensure that the
connection establishment does not fail due to insufficient local or remote
resources to satisfy the local or remote Provider-chosen values for the
outstanding RDMA Read incoming and outgoing for the Endpoint.

If Consumer specified more private data than local Provider supports the
operations fails synchronously with DAT_INVALID_PARAMETER. If local
Provider support the amount of private data but remote Provider cannot
the remote Provider will pass the truncated private data to the Consumer
and set the truncate_flag in the Connection Request Arrival event.

For the IB transport, Provider shall zero out transport specific private data
fields beyond the Consumer provided private data. This ensures that
remote Provider can detect the extra private data beyond what it can
support.

For iWARP Providers that support IETF MPA both the size of the private
data and the private data shall be mapped into MPA Request frame.
 Page 241

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.17 DAT_EP_DISCONNECT

Synopsis: DAT_RETURN

dat_ep_disconnect (

IN DAT_EP_HANDLE ep_handle,

IN DAT_CLOSE_FLAGS disconnect_flags

)

Parameters:

Description: dat_ep_disconnect requests a termination of a connection or connection
establishment. This operation is used by the active/client or a
passive/server side Consumer of the connection model.

disconnect_flags allows Consumers to specify whether they want graceful
or abrupt disconnect. Upon disconnect, all outstanding and in-progress
DTOs and RMR Binds must be completed.

For abrupt disconnect, all outstanding DTOs and RMR Binds are
completed unsuccessfully, and in-progress DTOs and RMR Binds can be
completed successfully or unsuccessfully. If an in-progress DTO is
completed unsuccessfully, all follow on in-progress DTOs in the same
direction also must be completed unsuccessfully. This order is presented
to the Consumer through a DTO completion Event Stream of the recv_
evd_handle and request_evd_handle of the Endpoint.

For graceful disconnect, all outstanding and in-progress request DTOs
and RMR Binds must try to be completed successfully first, before
disconnect proceeds. During that time, the local Endpoint is in a DAT_EP_
DISCONNECT_PENDING state.

The Consumer can call abrupt dat_ep_disconnect when the local
Endpoint is in the DAT_EP_DISCONNECT_PENDING state. This causes
the Endpoint to transition into DAT_EP_STATE_DISCONNECTED without
waiting for outstanding and in-progress request DTOs and RMR Binds to

ep_handle: Handle for an instance of Endpoint.

disconnect_flags: Flags for disconnect. Default value of DAT_CLOSE_
DEFAULT = DAT_CLOSE_ABRUPT _FLAG
represents abrupt disconnect. See Table 7 for flag
definitions.

Table 7 EP Disconnect Flag Definitions

Features Definition

Abrupt close DAT_CLOSE_ABRUPT_FLAG

Graceful close DAT_CLOSE_GRACEFUL_FLAG
 Page 242

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

successfully complete. The graceful dat_ep_disconnect call when the
local Endpoint is in the DAT_EP_DISCONNECT_PENDING state has no
effect.

If the Endpoint is not in DAT_EP_STATE_CONNECTED, the semantic of
the operation is the same for graceful or abrupt disconnect_flags value.

No new Send, RDMA Read, and RDMA Write DTOs, or RMR Binds can
be posted to the Endpoint when the local Endpoint is in the DAT_EP_
DISCONNECT_PENDING state.

The successful completion of the disconnect is reported to the Consumer
through a DAT_CONNECTION_EVENT_DISCONNECTED event on
connect_evd_handle of the Endpoint. The Endpoint is automatically
transitioned into a DAT_EP_STATE_DISCONNECTED state upon
successful asynchronous completion. If the same EVD is used for
connect_evd_handle and any recv_evd_handle and request_evd_
handle, all successful Completion events of in-progress DTOs shall
precede the Disconnect Completion event.

Disconnecting a Disconnected Endpoint is no-op. Disconnecting an
Endpoint in DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_
RESERVED, DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
and DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING is
disallowed.

Both abrupt and graceful disconnect of the Endpoint during connection
establishment, DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
and DAT_EP_STATE_COMPLETION_PENDING “aborts” the connection
establishment and transitions the local Endpoint into DAT_EP_STATE_
DISCONNECTED. That causes preposted Recv DTOs to be flushed to
recv_evd_handle except recv buffers posted to SRQ associated with EP
that remains on SRQ unless they have been dequeue by the EP prior to
the disconnect.

dat_ep_disconnect is asynchronous. The operation return does not
indicate that the Endpoint is disconnected. Its thread safety is Provider-
dependent.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter; disconnect_flags
is invalid.
 Page 243

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.17.1 USAGE

6.6.17.2 RATIONALE

6.6.17.3 MODEL IMPLICATIONS

The behavior of posting a DTO to an Endpoint that is being disconnected
(dat_ep_disconnect is in progress and was not yet returned) is not
defined. Implementation does not require any locks to ensure that other
threads cannot post DTOs while a Disconnect is in progress.

After Disconnect is returned, the Endpoint is in DAT_EP_STATE_
DISCONNECTED and posting of Send, Recv, RDMA Read, RDMA Write
DTOs, or RMR Bind to the Endpoint results in the “flushing” of the posted
DTO or RMR to recv_evd_handle or request_evd_handle, regardless of
which thread is posting it except recv buffers posted to SRQ associated
with EP that remains on SRQ unless they have been dequeue by the EP
prior to disconnect or an error.

Note to Provider: For IB Providers, here is a way to support dat_ep_
disconnect (and dat_ep_free) in various Endpoint underlying QP/CM
states. Notice that this way is safe; it does not rely on any protocol beyond
the one defined in chapter 12 of the IBTA spec. It does rely on local CM
transitioning QP into an Error state at any time. This is consistent with what
the remote CM sees if the local QP is destroyed at any time that is allowed
by the IBTA spec.

Active side:

• CM: REQ Send state, QP is in Init (EP is in Active Connection
Pending State).
• When dat_ep_disconnect is issued, CM transitions the local QP

into an Error state (EP in a Disconnected state). Now wait for CM
timeout. If REP is received before timeout expired, send REJ
with code 4 (timeout), done.

• If REJ is received, done.
• If MRA received expired, send REJ with code 4 (timeout); done.

• CM: REP Wait state. The same actions as above.
• CM: REP Rcvd state, QP is in RTR (EP is still in Active Connection

Pending State).
• Consumer called dat_ep_disconnect when the Provider was

generating Connection Established event and has not sent
Accept to the remote side yet. Either way of handling this race is
fine. The Provider must either generate REJ with code 4
(timeout) or REP followed by a DREQ message. In the second

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint is not in the valid state for
disconnect.
 Page 244

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

case, two local events, Connection Established followed by
Disconnect, are generated. In the first case, only a Disconnect
event is generated.

• CM: MRA(REP) Sent: QP is in RTR (EP is in Active Request
Pending State).
• Send REJ, done.

• CM: Established, QP in RTS, EP connected.
• Normal disconnect sequence.

Passive side:

• CM: REQ Rcvd, QP in Init, EP in Unconnected.
• Disconnect is rejected. Consumer shall call dat_cr_reject

instead of dat_ep_disconnect.
• CM: MRA Sent, QP is in Init, EP is not involved yet.

• Send REJ with reason code 1.
• CM: REP Sent, QP RTR, EP in Pending state.

• Transition QP into error state. Wait for CM Timeout to expire.
There are multiple race conditions here:
• If Recv message arrives on connection before QP is in Error

state, go through a Connection Established state followed by
Send DREQ.

• If QP is moved to an Error state before Recv message, the
Recv fails. DREQ can be sent. CM is in TimeWait state, QP is
in error state, done.

• If REJ is received, done.
• If RTU is received, there is the race analogous to the Recv

message above. The same steps apply.
• If MRA recv, ignore the MRA, wait for the original timeout

period, and then send an REJ with reason code 4 if the
Provider doesn't receive an RTU or a message before that
timeout period is up.

• When timeout expired before an RTU or Recv message, send
REJ with reason code 4.

• If an RTU or Recv message arrived, Disconnect is done
already, done.

• CM is in TimeWait state. QP is in Error state, EP is in Unconnected
state.
• Disconnected or Broken event was generated already. Ignore

dat_ep_disconnect, done.
 Page 245

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.18 DAT_EP_RESET

Synopsis: DAT_RETURN

dat_ep_reset (

IN DAT_EP_HANDLE ep_handle

)

Parameters:

Description: dat_ep_reset transitions the local Endpoint from a Disconnected to an
Unconnected state.

The operation might cause the loss of any completions of previously
posted DTOs and RMRs that were not dequeued yet.

dat_ep_reset is valid for both Disconnected and Unconnected states. For
Unconnected state, the operation is no-op because the Endpoint is
already in an Unconnected state. For an Unconnected state, the
preposted Recvs are not affected by the call.

dat_ep_reset is synchronous. Its thread safety is Provider-dependent.

Returns:

6.6.18.1 USAGE

If the Consumer wants to ensure that all Completions are dequeued, the
Consumer can post DTO or RMR operations as a “marker” that are flushed
to recv_evd_handle or request_evd_handle. Now, when the Consumer
dequeues the completion of the “marker” from the EVD, it is guaranteed
that all previously posted DTO and RMR completions for the Endpoint
were dequeued for that EVD. Now, it is safe to reset the Endpoint without
losing any completions.

6.6.18.2 RATIONALE

6.6.18.3 MODEL IMPLICATIONS

6.6.19 DATA TRANSFER OPERATIONS

The following operations are defined below to do data transfer over the
connection that is represented locally by an Endpoint in the connected

ep_handle: Handle for an instance of Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint is not in the valid state for
reset.
 Page 246

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

state: send, receive, rdma_read and rdma_write. All these operations are
asynchronous and the completion of the data transfer it return
asynchronously via DTO completion event on the Send or Recv EVD of
the Endpoint. The DTO completion event provides: Endpoint to which
DTO was posted, user_cookie Consumer provided at the post of DTO,
status of the data transfer, transfered_length for successful transfer for
receive and RDMA Read operations, and the type of the completed
operation.

6.6.19.1 USAGE

DAPL-2.0 had added a new field for DTO completion type to dat_dto_
completion_event_data. As long as an application used the names of the
fields and not a position in the data structure a recompile will maintain the
application code compatibility. For applications that use the names of the
fields and used dat_event_data for memory allocation rather than dat_
dto_completion_event_data also maintain the backwards binary
compatibility.

6.6.20 DAT_EP_POST_SEND

Synopsis: DAT_RETURN

dat_ep_post_send (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags

)

Parameters:
ep_handle: Handle for an instance of the Endpoint.

num_segments: Number of lmr_triplets in local_iov. Can be 0 for 0 size
message.

local_iov: I/O Vector that specifies the local buffer that contains
data to be transferred. Can be NULL for 0 size
message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the send. Can be NULL.

completion_flags: Flags for posted Send. The default DAT_
COMPLETION_DEFAULT_FLAG is 0x00 (see
Appendix A.4). See Table 8 for flag definitions.
 Page 247

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
.

Description: dat_ep_post_send requests a transfer of all the data from the local_iov
over the connection of the ep_handle Endpoint to the remote side.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data
is transferred. The actual order of transfer of the data from the segments
is left to the implementation. The local_iov specification should adhere to
the rules defined in Appendix A.4.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When a Consumer does not adhere to this rule, the behavior
of the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov back after the dat_ep_
post_send returns should document this behavior and also specify its
support in Provider attributes. This behavior allows Consumers full control
of the local_iov, but not the memory it specifies after dat_ep_post_send
returns. Because this behavior is not guaranteed by all Providers, portable
Consumers shall not rely on this behavior. Consumers shall not rely on the
Provider copying local_iov information.

Table 8 Send DTO Flag Definitions

Features Definition/Bit Value Description Caveat

Completion
Suppression

0x00 Generate Completion.

DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Solicited Wait 0x00 No request for
notification completion
for matching receive on
the other side of the
connection.

DAT_COMPLETION_
SOLICITED_WAIT_FLAG

0x02 Request for notification
completion for
matching receive on
the other side of the
connection.

Notification of
Completion

0x00 Notification completion. Local Endpoint must
be configured for
Notification
Suppression.

DAT_COMPLETION_
UNSIGNALLED_FLAG

0x04 Non-notification
completion.

Barrier Fence 0x00 No request for RDMA
Read Barrier Fence.

.

DAT_COMPLETION_
BARRIER_FENCE_FLAG

0x08 Request for RDMA
Read Barrier Fence.
 Page 248

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The DAT_SUCCESS return of the dat_ep_post_send is at least the
equivalent of posting a Send operation directly by native Transport.
Providers shall avoid resource allocation as part of dat_ep_post_send to
ensure that this operation is nonblocking.

The completion of the posted Send is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted Send.

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in the DAT_EP_STATE_
DISCONNECTED state, the posted Send is immediately flushed to
request_evd_handle.

If the reported status of the Completion DTO event corresponding to the
posted Send DTO is not DAT_DTO_SUCCESS, the transfered_length in
the DTO Completion event is not defined.

dat_ep_post_send is asynchronous and nonblocking. Its thread safety is
Provider-dependent. This routine is always thread safe with respect to
dat_ep_post_recv.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one
of the IOV segments pointed to a
memory outside its LMR.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.
 Page 249

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.20.1 USAGE

For best Send operation performance, the Consumer should align each
buffer segment of local_iov to the Optimal Buffer Alignment attribute of the
Provider. For portable applications, the Consumer should align each buffer
segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

6.6.20.2 RATIONALE

6.6.20.3 MODEL IMPLICATIONS

6.6.21 DAT_EP_POST_SEND_WITH_INVALIDATE

Synopsis: DAT_RETURN

dat_ep_post_send_with_invalidate (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags,

IN DAT_BINARY invalidate_flag,

IN DAT_RMR_CONTEXT rmr_context

)

Parameters:

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between an LMR of
one of the local_iov segments and
the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. One of the
LMRs used in local_iov was either
invalid or did not have the local read
privileges.

ep_handle: Handle for an instance of the Endpoint.

num_segments: Number of lmr_triplets in local_iov. Can be 0 for 0 size
message.

local_iov: I/O Vector that specifies the local buffer that contains
data to be transferred. Can be NULL for 0 size
message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the send. Can be NULL.
 Page 250

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

.

Description: dat_ep_post_send_with_invalidate requests a transfer of all the data from
the local_iov over the connection of the ep_handle Endpoint to the remote
side and invalidates the Remote Memory Region context.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data
is transferred. The actual order of transfer of the data from the segments

completion_flags: Flags for posted Send. The default DAT_
COMPLETION_DEFAULT_FLAG is 0x00 (see
Appendix A.4). See Table 8 for flag definitions.

invalidate_flag: A binary indicator that indicated whether remote
invalidation of rmr_context was requested. The value
of DAT_TRUE indicate that RMR_context invalidation
is requested and the value of DAT_FALSE indicates
no remote invlidation.

rmr_context: Remote Memory Context to be invalidated at remote
side of the connection.

Table 9 Send with Invalidate DTO Flag Definitions

Features Definition/Bit Value Description Caveat

Completion
Suppression

0x00 Generate Completion.

DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Solicited Wait 0x00 No request for
notification completion
for matching receive on
the other side of the
connection.

DAT_COMPLETION_
SOLICITED_WAIT_FLAG

0x02 Request for notification
completion for
matching receive on
the other side of the
connection.

Notification of
Completion

0x00 Notification completion. Local Endpoint must
be configured for
Notification
Suppression.

DAT_COMPLETION_
UNSIGNALLED_FLAG

0x04 Non-notification
completion.

Barrier Fence 0x00 No request for RDMA
Read Barrier Fence.

.

DAT_COMPLETION_
BARRIER_FENCE_FLAG

0x08 Request for RDMA
Read Barrier Fence.
 Page 251

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
is left to the implementation. The local_iov specification should adhere to
the rules defined in Appendix A.4.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When a Consumer does not adhere to this rule, the behavior
of the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov back after the dat_ep_
post_send returns should document this behavior and also specify its
support in Provider attributes. This behavior allows Consumers full control
of the local_iov, but not the memory it specifies after dat_ep_post_send
returns. Because this behavior is not guaranteed by all Providers, portable
Consumers shall not rely on this behavior. Consumers shall not rely on the
Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_send is at least the
equivalent of posting a Send operation directly by native Transport.
Providers shall avoid resource allocation as part of dat_ep_post_send to
ensure that this operation is nonblocking.

The completion of the posted Send is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted Send.

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in the DAT_EP_STATE_
DISCONNECTED state, the posted Send is immediately flushed to
request_evd_handle.

The invalidate_flag indicate whether the requested rmr_context requested
for invalidation. The value of DAT_TRUE specify that invalidation is
requested, and the value of DAT_FALSE specify that invalidation is not
requested. If invalidation is not requested the value of rmr_context is
undefined.

If the reported status of the Completion DTO event corresponding to the
posted Send DTO is not DAT_DTO_SUCCESS, the transfered_length in
the DTO Completion event is not defined.

dat_ep_post_send is asynchronous and nonblocking. Its thread safety is
Provider-dependent. This routine is always thread safe with respect to
dat_ep_post_recv. The operation is UpCall safe.
 Page 252

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Returns:

6.6.21.0.1 USAGE

For best Send operation performance, the Consumer should align each
buffer segment of local_iov to the Optimal Buffer Alignment attribute of the
Provider. For portable applications, the Consumer should align each
buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

6.6.21.0.2 RATIONALE

6.6.21.0.3 MODEL IMPLICATIONS

6.6.22 DAT_EP_POST_RECV

Synopsis: DAT_RETURN

dat_ep_post_recv (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags

)

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one
of the IOV segments pointed to a
memory outside its LMR.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between an LMR of
one of the local_iov segments and
the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. One of the
LMRs used in local_iov was either
invalid or did not have the local read
privileges.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.
 Page 253

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Parameters:

.

Description: dat_ep_post_recv requests the receive of the data over the connection of
the ep_handle Endpoint of the incoming message into the local_iov.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole
message is received. This ensures that all the “front” segments of the
local_iov I/O Vector are completely filled, only one segment is partially
filled, if needed, and all segments that follow it are not filled at all. The
actual order of segment fillings is left to the implementation. The local_iov
specification should adhere to the rules defined in Appendix A.4.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted Receive.

The completion of the posted Receive is reported to the Consumer
asynchronously through a DTO Completion event based on the
configuration of the connection for Solicited Wait and the specified
completion_flags value for the matching Send. The value of DAT_
COMPLETION _UNSIGNALLED_FLAG is only valid if the Endpoint Recv
Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG.
Otherwise, DAT_INVALID_PARAMETER is returned.

ep_handle: Handle for an instance of the Endpoint.

num_segments: Number of lmr_triplets in local_iov. Can be 0 for
receiving a 0 size message.

local_iov: I/O Vector that specifies the local buffer to be filled.
Can be NULL for receiving a 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the Receive DTO. Can be NULL.

completion_flags: Flags for posted Receive. The default DAT_
COMPLETION_DEFAULT_FLAG is 0x00 (see
Appendix A.4). See Table 10 for flag definitions.

Table 10 Receive DTO Flag Definitions

Features Definition/Bit Value Description Caveat

Notification of
Completion

0x00 Notification completion. Local Endpoint must be
configured for Notification
Suppression.DAT_

COMPLETION_
UNSIGNALLED_
FLAG

0x04 Non-notification completion.
 Page 254

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The asynchronous successful completion of the posted Receive will
report which if it matched one of the remote Send operations. The size of
the transfered data is reported in the transfered_length of the DAT_DTO_
COMPLETION_EVENT_DATA.

The asynchronous successful completion of the posted Receive also
indicate whether remote side invalidated an rmr_context, and if yes, which
rmr_context has been invalidated. If rmr_context has been invalidated the
field operation in DAT_DTO_COMPLETION_EVENT_DATA returned is
DAT_RECEIVE_WITH_INVALIDATE. In this case the value of rmr_
context in DAT_DTO_COMPLETION_EVENT_DATA indicates which
RMR context (of LMR or of RMR) was invalidated. If operation field in
DAT_DTO_COMPLETION_EVENT_DATA is not DAT_RECEIVE_WITH_
INVALIDATE (DAT_RECEIVE) then the value of the field rmr_context in
DAT_DTO_COMPLETION_EVENT_DATA is undefined.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When a Consumer does not adhere to this rule, the behavior
of the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov but not the memory it
specified back after the dat_ep_post_recv returns should document this
behavior and also specify its support in Provider attributes. This behavior
allows Consumer full control of the local_iov content after dat_ep_post_
recv returns. Because this behavior is not guaranteed by all Providers,
portable Consumers shall not rely on this behavior. Consumers shall not
rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_recv is at least the
equivalent of posting a Receive operation directly by native Transport.
Providers shall avoid resource allocation as part of dat_ep_post_recv to
ensure that this operation is nonblocking.

If the size of an incoming message is larger than the size of the local_iov,
the reported status of the posted Receive DTO in the corresponding
Completion DTO event is DAT_DTO_LENGTH_ERROR. If the reported
status of the Completion DTO event corresponding to the posted Receive
DTO is not DAT_DTO_SUCCESS, the content of the local_iov is not
defined, the and the transfered_length in the DTO Completion event is not
defined. If the reported status of the Completion DTO event
corresponding to the posted Receive DTO is not DAT_DTO_SUCCESS,
the operation, rmr_context, are not defined.

The operation is valid for all states of the Endpoint. The actual data
transfer does not take place until the Endpoint is in the DAT_EP_STATE_
CONNECTED state. The operation on the Endpoint in DAT_EP_STATE_
DISCONNECTED is allowed. If the operation returns successfully, the
posted Recv is immediately flushed to recv_evd_handle.

If SRQ is associated with EP the operation is illegal and will return DAT_
INVALID_STATE.
 Page 255

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
dat_ep_post_recv is asynchronous and nonblocking. Its thread safety is
Provider-dependent. This routine is always thread safe with respect to
dat_ep_post_send, dat_ep_post_rdma_read, dat_ep_post_drma_write,
and dat_rmr_bind.

Returns:

6.6.22.1 USAGE

For the best Recv operation performance, the Consumer should align
each buffer segment of local_iov to the Optimal Buffer Alignment attribute
of the Provider. For portable applications, the Consumer should align each
buffer segment of local_iov to the DAT_OPTIMAL_ALIGNMENT.

6.6.22.2 RATIONALE

For the Recv with Invalidate case the returned invalidated rmr_context can
be used to verified that the correct RMR or rmr_context of the correct LMR
has been invalidated. In a typical scenario Recv data will include the ULP
operation info that has been completion by remote side for which local side
provided rmr_context that has been invalidated.

6.6.22.3 MODEL IMPLICATIONS

The invalidation of the rmr_context of LMR has no effect on the lmr_
context of the LMR. The invalidation of the rmr_context of an RMR
transitions the RMR into unbound state analogous to the state RMR will
transition upon local dat_rmr_bind with length of zero.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one
of the IOV segments pointed to a
memory outside its LMR.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between an LMR of
one of the local_iov segments and
the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. One of the
LMRs used in local_iov was either
invalid or did not have the local write
privileges.
 Page 256

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.23 DAT_EP_POST_RDMA_READ

Synopsis: DAT_RETURN

dat_ep_post_rdma_read (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_RMR_TRIPLET *remote_buffer,

IN DAT_COMPLETION_FLAGS completion_flags

)

Parameters:
ep_handle: Handle for an instance of the Endpoint.

num_segments: Number of lmr_triplets in local_iov.

local_iov: I/O Vector specifying the local data buffer to fill.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the RDMA Read. Can be NULL.

remote_buffer: A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

completion_flags: Flags for posted RDMA Read. The default DAT_
COMPLETION_DEFAULT_FLAG is 0x00 (see
Appendix A.4). See Table 11 for flag definitions.

Table 11 RDMA Read DTO Flag Definitions

Features Definition/Bit Value Description Caveat

Completion
Suppression

0x00 Generate Completion.

DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Notification of
Completion

0x00 Notification Completion. Local Endpoint must be
configured for Notification
Suppression.DAT_COMPLETION_

UNSIGNALLED_FLAG
0x04 Non-notification

Completion.

Barrier Fence 0x00 No request for RDMA
Read Barrier Fence.

DAT_COMPLETION_
BARRIER_FENCE_FLAG

0x08 Request for RDMA Read
Barrier Fence.
 Page 257

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_ep_post_rdma_read requests the transfer of all the data specified by
the remote_buffer over the connection of the ep_handle Endpoint into the
local_iov.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole
message is received. This ensures that all the “front” segments of the
local_iov I/O Vector are completely filled, only one segment is partially
filled, if needed, and all segments that follow it are not filled at all. The
actual order of segment fillings is left to the implementation. The local_iov
and remote_buffer specifications should adhere to the rules defined in
Appendix A.4.

The requested length of the data transfer is specified by the local buffer
length. That is the sum of the segment_lengths of local_iov.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted RDMA Read.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When a Consumer does not adhere to this rule, the behavior
of the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov but not the memory it
specifies back after the dat_ep_post_rdma_read returns should document
this behavior and also specify its support in Provider attributes. This
behavior allows Consumers full control of the local_iov content after dat_
ep_post_rdma_read is returned. Because this behavior is not guaranteed
by all Providers, portable Consumers shall not rely on this behavior.
Consumers shall not rely on the Provider copying local_iov information.

The completion of the posted RDMA Read is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The DAT_SUCCESS return of the dat_ep_post_rdma_read is at least the
equivalent of posting an RDMA Read operation directly by native
Transport. Providers shall avoid resource allocation as part of dat_ep_
post_rdma_read to ensure that this operation is nonblocking.

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in the DAT_EP_STATE_
DISCONNECTED state, the posted RDMA Read is immediately flushed to
request_evd_handle.
 Page 258

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

If EP max_rdma_read_out is zero then Consumer posting of an RDMA
Read will succeed but will cause RDMA Read to complete in error with
DAT_DTO_ERROR_LOCAL_PROTECTION.

If the reported status of the Completion DTO event corresponding to the
posted RDMA Read DTO is not DAT_DTO_SUCCESS, the content of the
local_iov is not defined and the transfered_length in the DTO Completion
event is not defined.

dat_ep_post_rdma_read is asynchronous and nonblocking. Its thread
safety is Provider-dependent. This routine is always thread safe with
respect to dat_ep_post_recv.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter; For example, one
of the IOV segments pointed to a
memory outside its LMR, or the
number of IOVs specified exceeds
EP capacity.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the receiving buffer is
too small for sending buffer data.
The size of the local buffer is too
small for the data of the remote
buffer.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between either an
LMR of one of the local_iov
segments and the local Endpoint or
the rmr_context and the remote
Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. Either one
of the LMRs used in local_iov is
invalid or does not have the local
write privileges, or rmr_context does
not have the remote read privileges.
 Page 259

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.23.1 USAGE

For the best RDMA Read operation performance, the Consumer should
align each buffer segment of local_iov to the Optimal Buffer Alignment
attribute of the Provider. For portable applications, the Consumer should
align each buffer segment of local_iov to the DAT_OPTIMAL_
ALIGNMENT.

If connection was established without outstanding RDMA Read attributes
matching on Endpoints on both sides (outstanding RDMA Read outgoing
on one end is larger than the outstanding RDMA Read incoming on the
other end), connection is broken when the number of incoming RDMA
Read exceeds the outstanding RDMA Read incoming attribute of the
Endpoint. The Consumer can use its own flow control to ensure that it
does not post more RDMA Reads then the remote EP outstanding RDMA
Read incoming attribute is. Thus, they do not rely on the underlying
Transport enforcing it.

For some RDMA Transports and Providers a local RDMA Read buffer
memory require both RDMA Read and Write memory privileges. The
Provider attribute rdma_write_for_rdma_read_req indicate if this is the
case. Failure to set up local buffer memory privileges for these Providers
will result in asynchronous DTO completion error and connection being
broken.

DAT does not guarantee any ordering between multiple RDMA DTO even
over the same connection to the same remote memory.

6.6.23.2 RATIONALE

The pipeline of RDMA DTOs over a single connection can proceed
simultaneously. Thus, if they access the same remote memory the result
of the remote buffer is indeterminate. Consumer can control RDMA Read
ordering with respect to other RDMA Reads or Writes or Sends via DAT_
COMPLETION_BARRIER_FENCE_FLAG.

6.6.23.3 MODEL IMPLICATIONS

The number of posted RDMA Reads on Send WQ can exceed max_
rdma_read_out attribute of the EP. DAT Provider ensures that the number
of outstanding RDMA Reads on the remote endpoint of the connection
does not exceed the EP attribute. Consumer should rely on its own RDMA
Read flow control to ensure that the number of RDMA Reads for which
completions have not been generated does not exceed the EP max_
rdma_read_out attribute value.

While Provider does guarantee flow control for RDMA Read DTOs (the
maximum number of RDMA Reads reaching the remote host
simultaneously over a single connection), Consumer should avoid posting
more than max_rdma_read_out RDMA Reads to the connection. Since all
DTOs posted to the Send WQ of the EP are processed in order, inability
to process an RDMA Read that exceeds max_rdma_read_out will stall
processing of all other DTOs of the Send WQ of the EP. This is irrespective
 Page 260

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

of the Consumer specification of DAT_COMPLETION_BARRIER_
FENCE_FLAG value that is Consumer requested stalling of the Send WQ
processing.

The error behavior for the case when remote buffer is too small for
requested transfered data may be transport specific. The remote buffer
size is defined the size of the RMR and not necessarily the segment_
length of the DAT_RMR_TRIPLET specified locally.

The error can be provided synchronously or asynchronously. If the error
is return synchronously then DAT_LENGTH_ERROR is returned. A
synchronously returned error has no effect on the state of the Endpoint to
which operation was posted nor any other posted operations. A behavior
of the connection as well as the type of the asynchronous error return
when an error is return asynchronously is defined by the underlying
RDMA transport. For example, a connection may be broken as the result
of the asynchronous error. An asynchronous error may be return locally,
remotely or both.

6.6.24 DAT_EP_POST_RDMA_READ_TO_RMR

Synopsis: DAT_RETURN

dat_ep_post_rdma_read_to_rmr (

IN DAT_EP_HANDLE ep_handle,

IN DAT_RMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_RMR_TRIPLET *remote_buffer,

IN DAT_COMPLETION_FLAGS completion_flags

)

Parameters:

Description: dat_ep_post_rdma_read_to_rmr requests the transfer of all the data
specified by the remote_buffer over the connection of the ep_handle
Endpoint into the local_iov specified by the RMR segments.

ep_handle: Handle for an instance of the Endpoint.

local_iov: A pointer to an RMR Triplet that specifies the local
data buffer to fill.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the RDMA Read. Can be NULL.

remote_buffer: A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

completion_flags: Flags for posted RDMA Read. The default DAT_
COMPLETION_DEFAULT_FLAG is 0x00 (see
Appendix A.4). See Table 11 for flag definitions.
 Page 261

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
The requested length of the data transfer is specified by the local buffer
length. That is the segment_length of local_iov.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted RDMA Read.

A Consumer shall not modify the local_iov content inclusing RMR and its
underlying LMR until the DTO is completed. When a Consumer does not
adhere to this rule, the behavior of the Provider and the underlying
Transport is not defined.

The completion of the posted RDMA Read is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The DAT_SUCCESS return of the dat_ep_post_rdma_read_to_rmr is at
least the equivalent of posting an RDMA Read operation directly by native
Transport. Providers shall avoid resource allocation as part of dat_ep_
post_rdma_read_to_rmr to ensure that this operation is nonblocking.

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in the DAT_EP_STATE_
DISCONNECTED state, the posted RDMA Read is immediately flushed to
request_evd_handle.

If EP max_rdma_read_out is zero then Consumer posting of an RDMA
Read will succeed but will cause RDMA Read to complete in error with
DAT_DTO_ERROR_LOCAL_PROTECTION.

If the reported status of the Completion DTO event corresponding to the
posted RDMA Read DTO is not DAT_DTO_SUCCESS, the content of the
local_iov is not defined and the transfered_length in the DTO Completion
event is not defined.

dat_ep_post_rdma_read_to_rmr is asynchronous and nonblocking. Its
thread safety is Provider-dependent. This routine is always thread safe
with respect to dat_ep_post_recv.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.
 Page 262

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.24.1 USAGE

For the best RDMA Read operation performance, the Consumer should
align the local_iov buffer to the Optimal Buffer Alignment attribute of the
Provider. For portable applications, the Consumer should align the local_
iov buffer to the DAT_OPTIMAL_ALIGNMENT.

If connection was established without outstanding RDMA Read attributes
matching on Endpoints on both sides (outstanding RDMA Read outgoing
on one end is larger than the outstanding RDMA Read incoming on the
other end), connection is broken when the number of incoming RDMA
Read exceeds the outstanding RDMA Read incoming attribute of the
Endpoint. The Consumer can use its own flow control to ensure that it
does not post more RDMA Reads then the remote EP outstanding RDMA
Read incoming attribute is. Thus, they do not rely on the underlying
Transport enforcing it.

For some RDMA Transports and Providers a local RDMA Read buffer
memory require both RDMA Read and RDMA Write memory privileges.
The Provider attribute rdma_write_for_rdma_read_req indicate if this is
the case. Failure to set up local buffer memory privileges for these
Providers will result in asynchronous DTO completion error and
connection being broken.

DAT_INVALID_PARAMETER Invalid parameter; For example, a
local buffer includes memory outside
its RMR.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the remote buffer is too
large for requested data size.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between either an
RMR of one of the local_iov
segments and the local Endpoint or
the rmr_context and the remote
Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. Either one
of the RMRs used in local_iov is
invalid or does not have the local
write privileges, or rmr_context of
remote_buffer does not have the
remote read privileges.
 Page 263

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
DAT does not guarantee any ordering between multiple RDMA DTO even
over the same connection to the same remote memory.

6.6.24.2 RATIONALE

The pipeline of RDMA DTOs over a single connection can proceed
simultaneously. Thus, if they access the same remote memory the result
of the remote buffer is indeterminate. Consumer can control RDMA Read
ordering with respect to other RDMA Reads or Writes or Sends via DAT_
COMPLETION_BARRIER_FENCE_FLAG.

This capability is needed for applications that wish to guarantee that the
RMR Context for an LMR Context is not exposed to the network. An RMR
Context can be invalidated at a lower cost, and is therefore preferable.

6.6.24.3 MODEL IMPLICATIONS

The number of posted RDMA Reads on Send WQ can exceed max_
rdma_read_out attribute of the EP. DAT Provider ensures that the number
of outstanding RDMA Reads on the remote endpoint of the connection
does not exceed the EP attribute. Consumer should rely on its own RDMA
Read flow control to ensure that the number of RDMA Reads for which
completions have not been generated does not exceed the EP max_
rdma_read_out attribute value.

While Provider does guarantee flow control for RDMA Read DTOs (the
maximum number of RDMA Reads reaching the remote host
simultaneously over a single connection), Consumer should avoid posting
more than max_rdma_read_out RDMA Reads to the connection. Since all
DTOs posted to the Send WQ of the EP are processed in order, inability
to process an RDMA Read that exceeds max_rdma_read_out will stall
processing of all other DTOs of the Send WQ of the EP. This is irrespective
of the Consumer specification of DAT_COMPLETION_BARRIER_
FENCE_FLAG value that is Consumer requested stalling of the Send WQ
processing.

The error behavior for the case when a remote buffer is too small for
requested transfered data may be transport specific. The remote buffer
size is defined the size of the RMR and not necessarily the segment_
length of the DAT_RMR_TRIPLET specified locally.

The error can be provided synchronously or asynchronously. If the error is
return synchronously then DAT_LENGTH_ERROR is returned. A
synchronously returned error has no effect on the state of the Endpoint to
which operation was posted nor any other posted operations. A behavior
of the connection as well as the type of the asynchronous error return
when an error is return asynchronously is defined by the underlying RDMA
transport. For example, a connection may be broken as the result of the
asynchronous error. An asynchronous error may be return locally,
remotely or both.
 Page 264

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.6.25 DAT_EP_POST_RDMA_WRITE

Synopsis: DAT_RETURN

dat_ep_post_rdma_write (

IN DAT_EP_HANDLE ep_handle,

IN DAT_COUNT num_segments,

IN DAT_LMR_TRIPLET *local_iov,

IN DAT_DTO_COOKIE user_cookie,

IN DAT_RMR_TRIPLET *remote_buffer,

IN DAT_COMPLETION_FLAGS completion_flags

)

Parameters:
ep_handle: Handle for an instance of the Endpoint.

num_segments: Number of lmr_triplets in local_iov.

local_iov: I/O Vector specifying the local buffer from which the
data is transferred.

user_cookie: User-provided cookie that is returned to a Consumer
at the completion of the RDMA Write.

remote_buffer: A pointer to an RMR triplet that specifies the remote
buffer to which the data shall be written.

completion_flags: Flags for posted RDMA Write. The default DAT_
COMPLETION_DEFAULT_FLAG is 0 (see Appendix
A.4). See Table 12 for flag definitions.

Table 12 RDMA Write DTO Flag Definitions

Features Definition/Bit Value Description Caveat

Completion
Suppression

0x00 Generate Completion.

DAT_COMPLETION_
SUPPRESS_FLAG

0x01 Suppress successful
Completion.

Notification of
Completion

0x00 Notification Completion. Local Endpoint must be
configured for Notification
Suppression.DAT_COMPLETION_

UNSIGNALLED_
FLAG

0x04 Non-notification
Completion.
 Page 265

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_ep_post_rdma_write requests a transfer of all the data from the local_
iov over the connection of the ep_handle Endpoint into the remote_buffer.

num_segments specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data
is transferred. The actual order of transfer of the data from the segments
is left to the implementation. The local_iov and the remote_buffer
specifications should adhere to the rules defined in Appendix A.4.

The requested length of the data transfer is specified by the local buffer
length. That is the sum of the segment_lengths of local_iov.

A Consumer shall not modify the local_iov or its content until the DTO is
completed. When Consumer does not adhere to this rule, the behavior of
the Provider and the underlying Transport is not defined. Providers that
allow Consumers to get ownership of the local_iov but not the memory it
specifies back after the dat_ep_post_rdma_write returns, should
document this behavior and also specify its support in Provider attributes.
This behavior allows Consumers full control of the local_iov after dat_ep_
post_rdma_write returns. Because this behavior is not guaranteed by all
Providers, portable Consumers shall not rely on this behavior. Consumers
shall not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_rdma_write is at least the
equivalent of posting an RDMA Write operation directly by native
Transport. Providers shall avoid resource allocation as part of dat_ep_
post_rdma_write to ensure that this operation is nonblocking.

The completion of the posted RDMA Write is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each
DTO. These identifiers are completely under user control and are opaque
to the Provider. There is no requirement on the Consumer that the value
user_cookie should be unique for each DTO. The user_cookie is returned
to the Consumer in the Completion event for the posted RDMA Write.

Barrier Fence 0x00 No request for RDMA
Read Barrier Fence.

DAT_COMPLETION_
BARRIER_FENCE_
FLAG

0x08 Request for RDMA Read
Barrier Fence.

Table 12 RDMA Write DTO Flag Definitions (Continued)

Features Definition/Bit Value Description Caveat
 Page 266

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in the DAT_EP_STATE_
DISCONNECTED state, the posted RDMA Write is immediately flushed
to request_evd_handle.

If the reported status of the Completion DTO event corresponding to the
posted RDMA Write DTO is not DAT_DTO_SUCCESS, the transfered_
length in the DTO Completion event is not defined.

dat_ep_post_rdma_write is asynchronous and nonblocking. Its thread
safety is Provider-dependent. This routine is always thread safe with
respect to dat_ep_post_recv.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter; For example, one
of the IOV segments pointed to a
memory outside its LMR, or the
number of IOVs specified exceeds
EP capacity.

DAT_INVALID_HANDLE Invalid DAT handle; ep_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the receiving buffer was
too small for sending buffer data.
The size of the remote buffer was
too small for the data of the local
buffer.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access. Protection
Zone mismatch between either an
LMR of one of the local_iov
segments and the local Endpoint or
the rmr_context and the remote
Endpoint.
 Page 267

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.6.25.1 USAGE

For the best RDMA Write operation performance, the Consumer should
align each buffer segment of local_iov to the Optimal Buffer Alignment
attribute of the Provider. For portable applications, the Consumer should
align each buffer segment of local_iov to DAT_OPTIMAL_ALIGNMENT.

DAT does not guarantee any ordering between multiple RDMA DTO even
over the same connection to the same remote memory.

The pipeline of RDMA DTOs over a single connection can proceed
simultaneously. Thus, if they access the same remote memory the result
of the remote buffer is indeterminate. The result of multiple RDMA Writes
accessing the same buffer simultaneously can range from data in the
buffer from any one of those RDMA Write operations, to data in the buffer
being a mixture from multiple RDMA Writes. Consumer can control RDMA
Read ordering with respect to other RDMA Writes via DAT_
COMPLETION_BARRIER_FENCE_FLAG.

If Consumer desires a deterministic result they should use ULP protocol
to ensure that only one RDMA Write operation accesses remote buffer at
a time. For example, they can use 0-size RDMA Read between a pair of
RDMA Writes that access the same remote location. See 6.8.2.1 Usage
on page 299 for details and more advice.

6.6.25.2 RATIONALE

Each instance of multiple RDMA Writes accessing the same remote
location generates a return code the same as if it were a single RDMA
Write accessing that memory location. Another words, no error will be
generated because multiple RDMA Writes access the same memory
location.

6.6.25.3 MODEL IMPLICATIONS

The error behavior for the case when remote buffer is too small for
transfered data may be transport specific. The remote buffer size is
defined the size of the RMR and not necessarily the segment_length of the
DAT_RMR_TRIPLET specified locally.

The error can be provided synchronously or asynchronously. If the error is
return synchronously then DAT_LENGTH_ERROR is returned. A
synchronously returned error has no effect on the state of the Endpoint to
which operation was posted nor any other posted operations. A behavior
of the connection as well as the type of the asynchronous error return
when an error is return asynchronously is defined by the underlying RDMA

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access. Either one
of the LMRs used in local_iov was
invalid or did not have the local read
privileges, or rmr_context did not
have the remote write privileges.
 Page 268

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

transport. For example, a connection may be broken as the result of the
asynchronous error. An asynchronous error may be return locally,
remotely or both.

6.7 MEMORY MANAGEMENT

6.7.1 PROTECTION ZONE

6.7.1.1 DAT_PZ_CREATE

Synopsis: DAT_RETURN

dat_pz_create (

IN DAT_IA_HANDLE ia_handle,

OUT DAT_PZ_HANDLE *pz_handle

)

Parameters:

Description: dat_pz_create creates an instance of the Protection Zone. The Protection
Zone provides Consumers a mechanism for association Endpoints with
LMRs and RMRs to provide protection for local and remote memory
accesses by DTOs.

dat_pz_create is synchronous and thread safe.

Returns:

6.7.1.1.1 USAGE

6.7.1.1.2 RATIONALE

6.7.1.1.3 MODEL IMPLICATIONS

6.7.1.2 DAT_PZ_FREE

Synopsis: DAT_RETURN

dat_pz_free (

ia_handle: Handle for an open instance of the IA.

pz_handle: Handle for the created instance of Protection Zone.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is
invalid.
 Page 269

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
IN DAT_PZ_HANDLE pz_handle

)

Parameters:

Description: dat_pz_free destroys an instance of the Protection Zone. The Protection
Zone cannot be destroyed if it is in use by an Endpoint, LMR, or RMR.

It is illegal to use the destroyed handle in any subsequent operation.

dat_pz_free is synchronous and non-thread safe.

Returns:

6.7.1.2.1 USAGE

6.7.1.2.2 RATIONALE

6.7.1.2.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.7.1.3 DAT_PZ_QUERY

Synopsis: DAT_RETURN

dat_pz_query (

IN DAT_PZ_HANDLE pz_handle,

IN DAT_PZ_PARAM_MASK pz_param_mask,

OUT DAT_PZ_PARAM *pz_param

)

Parameters:

pz_handle: Handle for an instance of Protection Zone to be destroyed.

DAT_SUCCESS The operation was successful.

DAT_INVALID_STATE Parameter in an invalid state. The
Protection Zone was in use by
Endpoint, LMR, or RMR instances.

DAT_INVALID_HANDLE Invalid DAT handle; pz_handle is
invalid.

pz_handle: Handle for the created instance of the Protection Zone.

pz_param_mask: Mask for Protection Zone parameters.

pz_param: Pointer to a Consumer-allocated structure that the
Provider fills with Protection Zone parameters.
 Page 270

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_pz_query provides the Consumer parameters of the Protection Zone.
The Consumer passes in a pointer to the Consumer-allocated structures
for Protection Zone parameters that the Provider fills.

pz_param_mask allows Consumers to specify which parameters to query.
The Provider returns values for pz_param_mask requested parameters.
The Provider can return values for any other parameters.

dat_pz_query is synchronous and thread safe.

Returns:

6.7.1.3.1 USAGE

6.7.1.3.2 RATIONALE

6.7.1.3.3 MODEL IMPLICATIONS

6.7.2 LOCAL MEMORY REGION

6.7.2.1 DAT_LMR_CREATE

Synopsis: DAT_RETURN

dat_lmr_create (

IN DAT_IA_HANDLE ia_handle,

IN DAT_MEM_TYPE mem_type,

IN DAT_REGION_DESCRIPTION region_description,

IN DAT_VLEN length,

IN DAT_PZ_HANDLE pz_handle,

IN DAT_MEM_PRIV_FLAGS mem_privileges,

IN DAT_VA_TYPE va_type,

OUT DAT_LMR_HANDLE *lmr_handle,

OUT DAT_LMR_CONTEXT *lmr_context,

OUT DAT_RMR_CONTEXT *rmr_context,

OUT DAT_VLEN *registered_size,

OUT DAT_VADDR *registered_address

)

Parameters:

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; pz_param_mask
is invalid.

DAT_INVALID_HANDLE Invalid DAT handle; pz_handle is
invalid.
 Page 271

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Table 13 LMR Memory Type Specification Definitions

Memory Type Description Region description Length

DAT_MEM_TYPE_
VIRTUAL

Consumer virtual memory. A pointer to a
contiguous user
virtual range.

Length of the
Memory Region

DAT_MEM_TYPE_LMR LMR An LMR_handle Length parameter
is ignored

DAT_MEM_TYPE_
SHARED_VIRTUAL

Shared memory region. All DAT
Consumers of the same uDAPL
Provider specify the same Consumer
cookie to indicate who is sharing the
shared memory region. This supports
a peer-to-peer model of shared
memory. All DAT Consumers of the
shared memory must allocate the
memory region as shared memory
using Platform-specific primitives.

A structure with 2
elements, where the
first one is
a pointer to a
contiguous user
virtual range,
and the second one
is of type DAT_LMR_
COOKIE
is a unique identifier
of the shared
memory region.

Length of the
Memory Region

ia_handle: Handle for an open instance of the IA.

mem_type: Type of memory to be registered. See Table 13 for
memory type specifications.

region_description: Pointer to type-specific data describing the memory in
the region to be registered. The type is derived from
the mem_type parameter.

length: Length parameter accompanying the region_
description.

pz_handle: Handle for an instance of the Protection Zone.

mem_privileges: Consumer-requested memory access privileges for
the registered local memory region. The Default value
is DAT_MEM_PRIV_NONE_FLAG. The constant
value DAT_MEM_PRIV_ALL_FLAG, which specifies
both Read and Write privileges, is also defined. See
Table 14 for memory privilege definitions.
 Page 272

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_lmr_create registers a memory region with an IA. The specified buffer
must have been previously allocated by the uDAPL Consumer on the
platform. The Provider must do memory pinning if needed, which includes
whatever OS-dependent steps are required to ensure that the memory is
available on demand for the Interface Adapter. uDAPL does not require
that the memory never be swapped out; just that neither the hardware nor
the Consumer ever has to deal with it not being there. The created lmr_
context can be used for local buffers of DTOs and for binding RMRs, and
lmr_handle can be used for creating other LMRs. For uDAPL the scope of
the lmr_context is the address space of the DAT Consumer.

The return values of registered_size and registered_address indicate to
the Consumer how much the contiguous region of Consumer virtual
memory was registered by the Provider and where the region starts in the
Consumer virtual address.

The mem_type parameter indicates to the Provider the kind of memory to
be registered, and can take on any of the values defined in Table 13.pz_

Table 14 LMR Memory Privilege Definitions

Privileges Definition/Bit Value Description

Local Read 0x00 No local read access requested.

DAT_MEM_PRIV_LOCAL_READ_FLAG 0x01 Local read access requested.

Local Write 0x00 No local write access requested.

DAT_MEM_PRIV_LOCAL_WRITE_FLAG 0x10 Local write access requested.

Remote Read 0x00 No remote read access requested.

DAT_MEM_PRIV_REMOTE_READ_FLAG 0x02 Remote read access requested.

Remote Write 0x00 No remote write access requested.

DAT_MEM_PRIV_REMOTE_WRITE_FLAG 0x20 Remote write access requested.

lmr_handle: Handle for the created instance of the LMR.

lmr_context: Context for the created instance of the LMR to use for
DTO local buffers.

rmr_context: Remote Memory region Context for the created
instance of the LMR suitable to be shared with a
remote peer.

registered_size: Actual memory size registered by the Provider.

registered_address: Actual base address of the memory registered by the
Provider.
 Page 273

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
handle allows Consumers to restrict local accesses to the registered LMR
by DTOs.

DAT_LMR_COOKIE is a pointer to a unique identifier of the shared
memory region of the DAT_MEM_TYPE_SHARED_VIRTUAL DAT
memory type. The identifier is an array of 40 bytes allocated by the
Consumer. The Provider must check the entire 40 bytes and shall not
interpret it as a NULL-terminated string.

The return value of rmr_context can be transferred by the local Consumer
to a Consumer on a remote host to be used for an RDMA DTO.

If mem_privileges does not specify remote Read and Write privileges,
rmr_context is not generated and NULL is returned. No remote privileges
are given for Memory Region unless explicitly asked for by the Consumer.

Consumer can specify what type of virtual addressing to be used for the
create LMR. The 0-bazed VA assigns the VA of 0 to the beginning of the
registered memory region.

dat_lmr_create is synchronous and thread safe.

Returns:

6.7.2.1.1 USAGE

Consumers can create an LMR over the existing LMR memory with
different Protection Zones and privileges using previously created IA
translation table entries.

The Consumer shall use rmr_context with caution. Once advertised to a
remote peer, the rmr_context of the LMR cannot be invalidated. The only
way to invalidate it is to destroy the LMR (dat_lmr_free).

DAT-2.0 had modified the format of dat_lmr_triplet. As long as an
application used the names of the field and not a position in the data
structures a recompile will maintain the application code compatibility.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state. For
example, shared virtual buffer was
not created shared by the platform.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider. For
example, requested Memory Type
was not supported by the Provider.
 Page 274

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.7.2.1.2 RATIONALE

6.7.2.1.3 MODEL IMPLICATIONS

Upon creation of the LMR, the Provider adds the registered region to the
IA translation table.

For some transports, like IB, the actual registered memory protection
enforced for local and remote accesses for the Memory Region can be
different. But the registered memory region requested by the Consumer-
enforced protection bounds for the remote access are always within the
enforced protection bounds of the actual memory registered for local
access. Because the operation only returns a single set of actual
registered region boundary, the Provider should return the actual memory
boundary registered for remote access. The remote Consumer cannot
access the local Consumer memory using rmr_context outside the
returned registered_size and registered_address. The Consumer should
not bind RMR for the LMR for a memory outside the region defined by
returned registered_size and registered_address.

Note to Provider: Some systems allow applications to map a large
memory space (36 or more bits) dynamically into a standard virtual
address memory space (such as 32 bits). The user application has the
ability to move one or more windows (typically page-sized) anywhere over
a larger set of pages that are assigned to the process.

This creates a three-tier addressing structure: the process-specific 32-bit
address, the process-specific larger address, and the physical address.
DAT only recognizes the first and the last.

However, a DAT Provider can fully support these memory architectures by
following a simple rule—always honor the semantics of the user memory
map at the time the LMR is registered. Suppose that the application has
a single 256-MB window that it is allowed to move to any of three different
extended memory banks. The application could register each of the
different regions with different LMRs as follows:

 mapSet(windowPtr,extAddressA);

 dat_lmr_create(ia,DAT_MEM_TYPE_VIRTUAL,windowPtr,

 windowSize,pz,privFlags,&lmrhA,&lmrcA,&rmrcA

 ®Size,®Addr);

 mapSet(windowPtr,extAddressB);

 dat_lmr_create(ia,DAT_MEM_TYPE_VIRTUAL,windowPtr,

 windowSize,pz,privFlags,&lmrhB,&lmrcB,&rmrcB

 ®Size,®Addr);

 mapSet(windowPtr,extAddressC);

 dat_lmr_create(ia,DAT_MEM_TYPE_VIRTUAL,windowPtr,

 windowSize,pz,privFlags,&lmrhC,&lmrcC,&rmrcC
 Page 275

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
 ®Size,®Addr);

From this point, LMR B refers to the memory that was selected after the
second mapSet call, whether or not that was how the user's memory was
currently mapped.

Even while this memory is not mapped in the user's window, it can be
referenced in receive operations, in send operations, or via RMR Contexts
for remote accesses. Neither the DAT Provider nor the remote peer care
what the application currently maps.

An address specified in an LMR triplet or an RMR triplet is always
interpreted in the context of the virtual memory map in operation at the
time of the registration.

When the local application receives a completion of a receive that posted
a buffer using LMR B, it presumably wants to reset its window to that
memory. However, it could send the data back out in another request
without doing so. The only requirement to ever restore the original
mapping is created by the local application’s need to access that memory
on its own.

6.7.2.2 DAT_LMR_FREE

Synopsis: DAT_RETURN

dat_lmr_free (

IN DAT_LMR_HANDLE lmr_handle

)

Parameters:

Description: dat_lmr_free destroys an instance of the LMR. The LMR cannot be
destroyed if it is in use by an RMR. The operation does not deallocate the
memory region or unpin memory on a host.

It is illegal to use the destroyed handle in any subsequent operation. Any
DTO operation that uses the destroyed LMR after the dat_lmr_free is
completed shall fail and report a protection violation. The use of rmr_
context of the destroyed LMR by a remote peer for an RDMA DTO results
in an error and broken connection on which it was used. Any remote
RDMA operation that uses the destroyed LMR rmr_context, whose
Transport-specific request arrived to the local host after the dat_lmr_free
has completed, fails and reports a protection violation. Remote RDMA
operation that uses the destroyed LMR rmr_context, whose Transport-
specific request arrived to the local host prior to the dat_lmr_free returns,
might or might not complete successfully. If it fails, DAT_DTO_ERR_

lmr_handle: Handle for an instance of LMR to be destroyed.
 Page 276

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

REMOTE_ACCESS is reported in DAT_DTO_COMPLETION_STATUS
for the remote RDMA DTO and the connection is broken.

dat_lmr_free is synchronous and non-thread safe.

Returns:

6.7.2.2.1 USAGE

6.7.2.2.2 RATIONALE

6.7.2.2.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.7.2.3 DAT_LMR_QUERY

Synopsis: DAT_RETURN

dat_lmr_query (

IN DAT_LMR_HANDLE lmr_handle,

IN DAT_LMR_PARAM_MASK lmr_param_mask,

OUT DAT_LMR_PARAM *lmr_param

)

Parameters:

Description: dat_lmr_query provides the Consumer LMR parameters. The Consumer
passes in a pointer to the Consumer-allocated structures for LMR
parameters that the Provider fills.

lmr_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for lmr_param_mask requested
parameters. The Provider can return values for any other parameters.

dat_lmr_query is synchronous. Its thread safety is Provider-dependent.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; lmr_handle is
invalid.

DAT_INVALID_STATE Parameter in an invalid state; LMR
is in use by an RMR instance.

lmr_handle: Handle for an instance of the LMR.

lmr_param_mask: Mask for LMR parameters.

lmr_param: Pointer to a Consumer-allocated structure that the
Provider fills with LMR parameters.
 Page 277

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Returns:

6.7.2.3.1 USAGE

6.7.2.3.2 RATIONALE

6.7.2.3.3 MODEL IMPLICATIONS

6.7.3 REMOTE MEMORY REGION

Consumers that would like to use RMR specific to one connection at a time
should use dat_rmr_create_for_ep, while RMR whose rmr_context can
be shared between multiple connections should use dat_rmr_create.

6.7.3.1 DAT_RMR_CREATE

Synopsis: DAT_RETURN

dat_rmr_create(

IN DAT_PZ_HANDLE pz_handle,

OUT DAT_RMR_HANDLE *rmr_handle

)

Parameters:

Description: dat_rmr_create creates an RMR for the specified Protection Zone. This
operation is relatively heavy. The created RMR can be bound to a memory
region within the LMR through a lightweight dat_rmr_bind operation that
generates rmr_context.

If the operation fails (does not return DAT_SUCCESS), the return values
of rmr_handle are undefined and Consumers should not use them.

pz_handle provide Consumers a way to restrict access to an RMR by
authorized connection only.

dat_rmr_create is synchronous and thread safe.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; lmr_param_
mask is invalid.

DAT_INVALID_HANDLE Invalid DAT handle; lmr_handle is
invalid.

pz_handle: Handle for an instance of the Protection Zone.

rmr_handle: Handle for the created instance of an RMR.
 Page 278

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Returns:

6.7.3.1.1 USAGE

6.7.3.1.2 RATIONALE

6.7.3.1.3 MODEL IMPLICATIONS

6.7.3.2 DAT_RMR_CREATE_FOR_EP

Synopsis: DAT_RETURN

dat_rmr_create_for_ep (

IN DAT_PZ_HANDLE pz_handle,

OUT DAT_RMR_HANDLE *rmr_handle

)

Parameters:

Description: dat_rmr_create_for_ep creates an RMR that is specific to a single
connection at a time.

This operation is relatively heavy. The created RMR can be bound to a
memory region within the LMR through a lightweight dat_rmr_bind
operation for EPs that use the pz_handle that generates rmr_context.

If the operation fails (does not return DAT_SUCCESS), the return values
of rmr_handle are undefined and Consumers should not use it.

pz_handle provide Consumers a way to restrict access to an RMR by
authorized connections only.

dat_rmr_create_for_ep is synchronous and thread safe.

Returns:

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; pz_handle is
invalid.

pz_handle: Handle for an instance of the Protection Zone.

rmr_handle: Handle for the created instance of an RMR.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle; pz_handle is
invalid.
 Page 279

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.7.3.2.1 USAGE

6.7.3.2.2 RATIONALE

6.7.3.2.3 MODEL IMPLICATIONS

Consumers can develop ULP which can adopt to whether Provider
supports EP scoped or PZ scoped for RMR protection but not both. But
since this requires logic for creating sufficient number of PZs and
registering memory specific for them it was decided that there is no benefit
for allowing Consumers to specify that they do not care which protection
they get for RMR.

6.7.3.3 DAT_RMR_FREE

Synopsis: DAT_RETURN

dat_rmr_free (

IN DAT_RMR_HANDLE rmr_handle

)

Parameters:

Description: dat_rmr_free destroys an instance of the RMR.

It is illegal to use the destroyed handle in any subsequent operation. Any
remote RDMA operation that uses the destroyed RMR rmr_context,
whose Transport-specific request arrived to the local host after the dat_
rmr_free has completed, fails and reports a protection violation. Remote
RDMA operation that uses the destroyed RMR rmr_context, whose
Transport-specific request arrived to the local host prior to the dat_rmr_
free return, might or might not complete successfully. If it fails, DAT_DTO_
ERR_REMOTE_ACCESS is reported in DAT_DTO_COMPLETION_
STATUS for the remote RDMA DTO and the connection is broken.

dat_rmr_free is allowed on either bound or unbound RMR. If RMR is
bound, dat_rmr_free unbinds (free HCA TPT and other resources and
whatever else binds with length of 0 should do), and then free RMR.

dat_rmr_free is synchronous and non-thread safe.

Returns:

rmr_handle: Handle for an instance of the RMR to be destroyed.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle; rmr_handle is
invalid.
 Page 280

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.7.3.3.1 USAGE

6.7.3.3.2 RATIONALE

6.7.3.3.3 MODEL IMPLICATIONS

If Provider detects the use of deleted object handle it should return DAT_
INVALID_HANDLE. Provider should avoid assigning the used handle as
long as possible. Once reassigned the handle is no longer belongs to a
destroyed object.

6.7.3.4 DAT_RMR_QUERY

Synopsis: DAT_RETURN

dat_rmr_query (

IN DAT_RMR_HANDLE rmr_handle,

IN DAT_RMR_PARAM_MASK rmr_param_mask,

OUT DAT_RMR_PARAM *rmr_param

)

Parameters:

Description: dat_rmr_query provides RMR parameters to the Consumer. The
Consumer passes in a pointer to the Consumer-allocated structures for
RMR parameters that the Provider fills.

rmr_param_mask allows Consumers to specify which parameters to
query. The Provider returns values for rmr_param_mask requested
parameters. The Provider can return values for any other parameters.

Not all parameters can have a value at all times. For example, mem_
privileges, rmr_context, and lmr_context, virtual_address, segment_
length of lmr_triplet are not defined for an unbounded RMR.

dat_rmr_query is synchronous. Its thread safety is Provider-dependent.

Returns:

rmr_handle: Handle for an instance of the RMR.

rmr_param_mask: Mask for RMR parameters.

rmr_param: Pointer to a Consumer-allocated structure that the
Provider fills with RMR parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter; rmr_param_
mask is invalid.

DAT_INVALID_HANDLE Invalid DAT handle; rmr_handle is
invalid.
 Page 281

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.7.3.4.1 USAGE

6.7.3.4.2 RATIONALE

6.7.3.4.3 MODEL IMPLICATIONS

There is no modify operation for the RMR. The dat_rmr_bind serves this
purpose.

6.7.3.5 DAT_RMR_BIND

Synopsis: DAT_RETURN

dat_rmr_bind(

IN DAT_RMR_HANDLE rmr_handle,

IN DAT_LMR_HANDLE lmr_handle,

IN DAT_LMR_TRIPLET *lmr_triplet,

IN DAT_MEM_PRIV_FLAGS mem_privileges,

IN DAT_VA_TYPE va_type,

IN DAT_EP_HANDLE ep_handle,

IN DAT_RMR_COOKIE user_cookie,

IN DAT_COMPLETION_FLAGS completion_flags,

OUT DAT_RMR_CONTEXT *rmr_context

)

Parameters:
rmr_handle: Handle for an RMR instance.

lmr_handle: Handle for an LMR instance that contains the memory
for the bind.

lmr_triplet: A pointer to an lmr_triplet that defines the memory
region of the LMR.

mem_privileges: Consumer-requested memory access privileges for
the registered remote memory region. The Default
value is DAT_MEM_PRIV_NONE_FLAG. The
constant value DAT_MEM_PRIV_ALL_FLAG, which
specifies both local and remote Read and Write
privileges, is also defined. See Table 15 for remote
memory privilege definitions.

va_type: Consumer requested Virtual Addressing for LMR. The
value DAT_VA_TYPE_VA requests a process virtual
address, while the value of DAT_VA_TYPE_ZB
requests virtual addressing that assigns virtual
address of 0 to the start of LMR.
 Page 282

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Table 15 RMR Remote Memory Privilege Definitions

Privileges Definition/Bit Value Description

Remote Read 0x00 No remote read access requested.

DAT_MEM_PRIV_REMOTE_READ_FLAG 0x02 Remote read access requested.

Remote Write 0x00 No remote write access requested.

DAT_MEM_PRIV_REMOTE_WRITE_FLAG 0x20 Remote write access requested.

ep_handle: Endpoint to which dat_rmr_bind is posted.

user_cookie: User-provided cookie that is returned to a Consumer
at the completion of the dat_rmr_bind. Can be NULL.

completion_flags: Flags for RMR Bind. The default DAT_COMPLETION_
DEFAULT_FLAG is 0 (see Appendix A.4). See Table
16 for flag definitions.

Table 16 RMR Bind Flag Definitions

Features Definition/Bit Value Description Caveat

Completion
Suppression

0x00 Generate Completion.

DAT_
COMPLETION_
SUPPRESS_
FLAG

0x01 Suppress successful
Completion.

Notification of
Completion

0x00 Notification Completion. Local Endpoint must be
configured for Notification
Suppression.DAT_

COMPLETION_
UNSIGNALLED_
FLAG

0x04 Non-notification Completion.

Barrier Fence 0x00 No request for Barrier Fence.

DAT_
COMPLETION_
BARRIER_
FENCE_FLAG

0x08 Request for Barrier Fence.

rmr_context: New rmr_context for the bound RMR suitable to be
shared with a remote host.
 Page 283

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Description: dat_rmr_bind binds the RMR to the specified memory region within an
LMR and provides the new rmr_context value. The dat_rmr_bind
operation is a lightweight asynchronous operation that generates a new
rmr_context. The Consumer is notified of the completion of this operation
through a rmr_bind Completion event on the request_evd_handle of the
specified Endpoint ep_handle.

The return value of rmr_context can be transferred by local Consumer to
a Consumer on a remote host to be used for an RDMA DTO. The use of
rmr_context by a remote host for an RDMA DTO prior to the completion of
the dat_rmr_bind can result in an error and a broken connection. The local
Consumer can ensure that the remote Consumer does not have rmr_
context before dat_rmr_bind is completed. One way is to “wait” for the
completion dat_rmr_bind on the rmr_bind Event Dispatcher of the
specified Endpoint ep_handle. Another way is to send rmr_context in a
Send DTO over the connection of the Endpoint ep_handle. The barrier-
fencing behavior of the dat_rmr_bind with respect to Send and RDMA
DTOs ensures that a Send DTO does not start until dat_rmr_bind
completed.

For the EP scoped RMR protection the RDMA operation that can use rmr_
context must be over the connection which is used for dat_rmr_bind. That
is the RDMA must use the remote EP of the connection of local ep_handle.

dat_rmr_bind automatically fences all Send, RDMA Read, and RDMA
Write DTOs and dat_rmr_bind operations submitted on the Endpoint ep_
handle after the dat_rmr_bind. Therefore, none of these operations starts
until dat_rmr_bind is completed.

If the RMR Bind fails after dat_rmr_bind returns, connection of ep_handle
is broken. The Endpoint transitions into a DAT_EP_STATE_
DISCONNECTED state and the DAT_CONNECTION_EVENT_BROKEN
event is delivered to the connect_evd_handle of the Endpoint.

dat_rmr_bind employs fencing to ensure that operations sending the RMR
Context on the same Endpoint as the bind specified cannot result in an
error from the peer side using the delivered RMR Context too soon. One
method, used by InfiniBand, is to ensure that none of these operations
start on the Endpoint until after the bind is completed. Other transports can
employ different methods to achieve the same goal.

Any RDMA DTO that uses the previous value of rmr_context after the dat_
rmr_bind is completed fail and report a protection violation.

By default, dat_rmr_bind generates notification completions.

mem_privileges allows Consumers to restrict the type of remote accesses
to the registered RMR by RDMA DTOs. Providers whose underlying
Transports require that privileges of the requested RMR and the
associated LMR match, that is

• Set RMR’s DAT_MEM_PRIV_REMOTE_READ_FLAG requires that
LMR’s DAT_MEM_PRIV_LOCAL_READ_FLAG is also set,
 Page 284

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• Set RMR’s DAT_MEM_PRIV_REMOTE_WRITE_FLAG requires
that LMR’s DAT_MEM_PRIV_LOCAL_WRITE_FLAG is also set,

or the operation fails will return DAT_PRIVILEGES_VIOLATION if the
mem_privileges is not set according to this rule.

Consumer can specify what type of virtual addressing to be used for the
create LMR. The 0-bazed VA assigns the VA of 0 to the beginning of the
registered memory region.

In the lmr_triplet, the value of length of zero means that the Consumer
does not want to associate an RMR with any memory region within the
LMR and the return value of rmr_context for that case is undefined.

The completion of the posted RMR Bind is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION _
UNSIGNALLED_FLAG is only valid if the Endpoint Request Completion
Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_
INVALID_PARAMETER is returned.

user_cookie allows Consumers to have unique identifiers for each dat_
rmr_bind. These identifiers are completely under user control and are
opaque to the Provider. The Consumer is not required to ensure the
uniqueness of the user_cookie value. The user_cookie is returned to the
Consumer in the rmr_bind Completion event for this operation.

The operation is valid for the Endpoint in the DAT_EP_STATE_
CONNECTED and DAT_EP_STATE_DISCONNECTED states. If the
operation returns successfully for the Endpoint in DAT_EP_STATE_
DISCONNECTED state, the posted RMR Bind is immediately flushed to
request_evd_handle.

dat_rmr_bind is asynchronous. Its thread safety is Provider-dependent.
This routine is always thread safe with respect to dat_ep_post_recv.

Returns:
DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, the
target_address or segment_length
exceeded the limits of the existing
LMR.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state.
Endpoint was not in the DAT_EP_
STATE_CONNECTED or DAT_EP_
STATE_DISCONNECTED state.
 Page 285

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.7.3.5.1 USAGE

In DAT-2.0 signature of DAT_RMR_BIND has been changed. An
Consumer will need to add dat_lmr_handle compare to the previous
versions of the spec.

DAT-2.0 had modified the format of dat_lmr_triplet and dat_rmr_triplet. As
long as an application used the names of the field and not a position in the
data structures a recompile will maintain the application code compatibility.

6.7.3.5.2 RATIONALE

6.7.3.5.3 MODEL IMPLICATIONS

The rmr_context is the OUT parameter only. For the Providers that need
that value to support RMR_Bind, they can extract the current value from
RMR_Handle themselves.

Consumers do not have control of assigning rmr_context values. The
values are picked by the Provider/IA for the Consumers, which ensures
that they are different from the previous one and ensures that the previous
rmr_context is invalid.

Consumer should not post a second RMR bind on the same RMR until the
first one completes. How Consumer knows that RMR bind has been
completed is not specified. Consumer can reap the first RMR bind
completion, reap completion of some other operation posted to the same
EP Send Queue after the first RMR Bind post or any other method. It is not
viewed as an inconvinience for Consumer since the reason RMR bind is
done in the first place so that generated RMR_context can be shared with
the remote side. So Consumer does not want to issue the second RMR
Bind which will invalidate the first RMR bind generated RMR_context and
cause RDMA operation from remote side that uses that RMR_context to
fail and break the connection.

But this trivial Consumer restriction allows Provider a freedom of
implementation with potential performance and/or robustness
improvements. This is especially true for EVD resize for EVDs used for SQ
and RQ of an EP.

6.7.4 NON-COHERENT MEMORY SUPPORT

The following two operations allow Consumer to synchronize local
memory in order to support RDMA operations with non-coherent memory.

DAT_MODEL_NOT_SUPPORTED The requested Model was not
supported by the Provider.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or
remote memory access.

DAT_PROTECTION_VIOLATION Protection violation for local or
remote memory access.
 Page 286

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.7.4.1 DAT_LMR_SYNC_RDMA_READ

Synopsis: DAT_RETURN

dat_lmr_sync_rdma_read (

IN DAT_IA_HANDLE ia_handle,

IN const DAT_LMR_TRIPLET *local_segments,

IN DAT_VLEN num_segments

)

Parameters:

Description: dat_lmr_sync_rdma_read makes memory changes visible to an incoming
RDMA Read operation. This operation guarantees consistency by locally
flushing the non-coherent cache prior to it being retrieved by remote peer
RDMA read operation.

The dat_lmr_sync_rdma_read is needed only if Provider attribute
specifies that this operation is needed prior to incoming RDMA Read
operation. Consumer must call dat_lmr_sync_rdma_read after modifying
data in a memory range in this region that will be the target of an incoming
RDMA Read operation. Dat_lmr_sync_rdma_read must be called after
the Consumer has modified the memory range but before the RDMA
Read operation starts, and the memory range that will be accessed by the
RDMA read must be supplied by the caller in the local_segments array.
After this call returns, the RDMA Read operation may safely see the
modified contents of the memory range. It is permissible to batch
synchronizations for multiple RDMA Read operations in a single call, by
passing a local_segments array that includes all modified memory
ranges. The local_segments entries need not contain the same LMR, and
need not be in the same Protection Zone.

If Provider attribute specifies that this operation is required, attempts to
read from a memory range that is not properly synchronized using dat_
lmr_sync_rdma_read the result in returned contents that are undefined.

dat_lmr_sync_rdma_read is synchronous, and its thread safety is
Provider-dependent.

Returns:

ia_handle: Handle for an open instance of the IA.

local_segments: Array of buffer segments.

num_segments Number of segments in local_segments argument.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle.
 Page 287

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.7.4.1.1 USAGE

Determining when an RDMA Read will start and what memory range it will
read is the Consumer's responsibility. One possibility is to have the
Consumer that is modifying memory call dat_lmr_sync_rdma_read and
then post a Send DTO message that identifies the range in the body of the
Send. The Consumer wishing to do the RDMA Read can receive this
message and thus know when it is safe to initiate the RDMA Read
operation.

6.7.4.1.2 RATIONALE

This call ensures that the Provider receives a coherent view of the buffer
contents upon a subsequent remote RDMA Read operation. After the call
completes, the Consumer is assured that all platform-specific buffer and
cache updates have been performed, and that the LMR range is
consistent with the Provider hardware. Any subsequent write by the
Consumer may void this consistency. The Provider is not required to
detect such access.

The action performed on the cache before the RDMA Read depends on
the cache type.

• I/O noncoherent cache will be invalidated.
• CPU noncoherent cache will be flushed.

6.7.4.1.3 MODEL IMPLICATIONS

6.7.4.2 DAT_LMR_SYNC_RDMA_WRITE

Synopsis: DAT_RETURN

dat_lmr_sync_rdma_write (

IN DAT_IA_HANDLE ia_handle,

IN const DAT_LMR_TRIPLET *local_segments,

IN DAT_VLEN num_segments

)

Parameters:

DAT_INVALID_PARAMETER Invalid parameter. For example, the
address range for a local segment
fell outside the boundaries of the
corresponding Local Memory
Region, or LMR_handle was invalid.

ia_handle: Handle for an open instance of the IA.

local_segments: Array of buffer segments.

num_segments Number of segments in local_segments argument.
 Page 288

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

Description: dat_lmr_sync_rdma_write makes the effects of an incoming RDMA Write
operation visible to Consumer. This operation guarantees consistency by
locally invalidating the non-coherent cache whose buffer has been
populated by remote peer RDMA write operation.

The dat_lmr_sync_rdma_write is needed if and only if Provider attribute
specifies that this operation is needed after an incoming RDMA Write
operation. Consumer must call dat_lmr_sync_rdma_write before reading
data from a memory range in this region that was the target of an incoming
RDMA Write operation. dat_lmr_sync_rdma_write must be called after the
RDMA Write operation completes, and the memory range that was
modified by the RDMA Write must be supplied by the caller in the local_
segments array. After this call returns, the Consumer may safely see the
modified contents of the memory range. It is permissible to batch
synchronizations of multiple RDMA Write operations in a single call, by
passing a local_segments array that includes all modified memory
ranges. The local_segments entries need not contain the same LMR, and
need not be in the same Protection Zone.

The Consumer must also use dat_lmr_sync_rdma_write when performing
local writes to a memory range that was or will be the target of incoming
RDMA writes. After performing the local write, the Consumer must call
dat_lmr_sync_rdma_write before the RDMA Write is initiated. Conversely,
after an RDMA Write completes, the Consumer must call dat_lmr_sync_
rdma_write before performing a local write to the same range.

If Provider attribute specifies that this operation is needed and the
Consumer attempts to read from a memory range in an LMR without
properly synchronizing using dat_lmr_sync_rdma_write, the returned
contents are undefined. If the Consumer attempts to write to a memory
range without properly synchronizing, the contents of the memory range
become undefined.

dat_lmr_sync_rdma_write is synchronous, and its thread safety is
Provider-dependent.

Returns:

6.7.4.2.1 USAGE

Determining when an RDMA Write completes and determining which
memory range was modified is the Consumer's responsibility. One

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_PARAMETER Invalid parameter. For example, the
address range for a local segment
fell outside the boundaries of the
corresponding Local Memory
Region, or LMR_handle was invalid.
 Page 289

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
possibility is for the RDMA Write initiator to post a Send DTO message
after each RDMA Write that identifies the range in the body of the Send.
The Consumer at the target of the RDMA Write can receive the message
and thus know when and how to call dat_lmr_sync_rdma_write.

6.7.4.2.2 RATIONALE

This call ensures that the Provider receives a coherent view of the buffer
contents after a subsequent remote RDMA Write operation. After the call
completes, the Consumer is assured that all platform-specific buffer and
cache updates have been performed, and that the LMR range is
consistent with the Provider hardware. Any subsequent read by the
Consumer may void this consistency. The Provider is not required to
detect such access.

The action performed on the cache after the RDMA Write depends on the
cache type.

• I/O noncoherent cache will be flashed the I/O cache.
• CPU noncoherent cache will be invalidated the CPU cache.

6.7.4.2.3 MODEL IMPLICATIONS

6.8 COMPLETIONS

6.8.1 COMPLETION EVENTS AND POSTING INTERACTIONS

Completion of posted Send, RDMA Read, RDMA Write, Recv, or RMR
Bind operations is returned to the Consumer via DTO or RMR Bind
Completion events, respectively. The Consumer can get this event using
dat_evd_dequeue or dat_evd_wait.

Until Completion is reaped by the Consumer, the Request or Recv is still
outstanding and occupies an entry on the Request or Recv queue of the
Endpoint where it was posted. When the Consumer reaps a completion
event, the Request or Recv is no longer outstanding and its entry on the
Request or Recv queue of the Endpoint becomes available for another
posting. The Successful Completion of a posted DTO or RMR Bind to the
Request queue of an Endpoint, which had DAT_COMPLETION_
SUPPRESSION_FLAG set for completion_flags, has no completion event
generated for it. Hence, it remains outstanding and occupies an entry on
the Request queue of the Endpoint until the completion of a DTO or RMR
Bind posted after it to the same Request queue has been reaped.

Unsuccessful DTOs always generate completions. If posted DTO had
DAT_COMPLETION_SUPPRESSION_FLAG set then unsuccessful
completion is generated with Notification. If posted DTO had DAT_
COMPLETION_SUPPRESSION_FLAG not set then Notification for
unsuccessful completion is controlled by setting of the DAT_
COMPLETION_UNSIGNALLED_FLAG and for Recv by DAT_
COMPLETION_SOLICITED_WAIT_FLAG in addition to DAT_
COMPLETION_UNSIGNALLED_FLAG.
 Page 290

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The Consumer can dequeue an event from EVD at any time except when
there is already a waiter on the EVD. The Consumer controls when a
waiter is unblocked by the timeout, to control maximum duration of time
for the blocking of a dat_evd_wait and either, but not both, of the following:

1) Threshold of the EVD waiter.

2) Notification Flags of posted DTO or RMR Bind. The notification is
controlled locally via DAT_COMPLETION_UNSIGNALLED_FLAG of
completion_flags of a posted DTO or RMR Bind, or remotely for local
Recv completion via DAT_COMPLETION_SOLICITED_WAIT_FLAG
of completion_flags of matching Send, but not both at the same time.

When the Consumer controls waiter unblocking via threshold, the
following table specifies the behavior:

Case

Completion
Suppression
of locally
posted
operation

Notification
Suppression
of locally
posted
operation

Solicited
Wait of
remote Send

Result

Send, RDMA
Read, RDMA
Write, RMR Bind

0 or 1 1 - suppress N/A Post error - invalid flag
value.

Recv 1 - suppress 0 or 1 N/A Post error - invalid flag
value.

Recv 0 - no suppress 1 suppress N/A Post error - invalid flag
value.

Recv - Successful
or Unsuccessful
Completion

0 - no suppress 0 - no suppress 0 or 1 Completion IS generated
WITH notification. Waiter
unblocked only when
Threshold is reached.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Successful
completion

1 - suppress 0 - no suppress N/A Completion NOT
generated.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Unsuccessful
completion

0 - no suppress 0 - no suppress N/A Completion IS generated
WITH notification. Waiter
unblocked only when
Threshold is reached
 Page 291

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
If the EP Request Completion Flag is set for Notification Suppression
support, the following table specifies the behavior. When a Notification
event is generated, the waiter is unblocked.

If the EP Recv Completion Flag is set for Notification Suppression support,
the following table specifies the behavior. When a Notification event is
generated, the waiter is unblocked.

Case

Completion
Suppression
of locally
posted
operation

Notification
Suppression
of locally
posted
operation

Solicited
Wait of
remote Send

Result

Send, RDMA
Read, RDMA
Write, RMR Bind
- Successful
completion

1 - suppress 0 or 1 N/A Completion NOT
generated.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Unsuccessful
completion

1 - suppress 0 - no suppress N/A Completion IS generated
WITH notification.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Unsuccessful
completion

1 - suppress 1 - suppress N/A Completion IS generated
WITHOUT notification.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Unsuccessful
completion

0 - no suppress 0 - no suppress N/A Completion IS generated
WITH notification.

Send, RDMA
Read, RDMA
Write, RMR Bind
- Successful or
Unsuccessful
completion

0 - no suppress 1 - suppress N/A Completion IS generated
WITHOUT notification.
 Page 292

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

If the EP Recv Completion Flag is set for Solicited Wait support, the
following table specifies the behavior. When a Notification event is
generated, the waiter is unblocked.

Case

Completion
Suppression
of locally
posted
operation

Notification
Suppression
of locally
posted
operation

Solicited
Wait of
remote Send

Result

Recv 1 - suppress 0 or 1 N/A Post error - invalid flag
value.

Recv - Successful
or Unsuccessful
completion

0 - no suppress 1 - suppress 0 or 1 Completion IS generated
WITHOUT notification.

Recv - Successful
or Unsuccessful
completion

0 - no suppress 0 - no suppress 0 or 1 Completion IS generated
WITH notification.

Case

Completion
Suppression
of locally
posted
operation

Notification
Suppression
of locally
posted
operation

Solicited
Wait of
remote Send

Result

Recv 1 - suppress 0 or 1 N/A Post error - invalid flag
value.

Recv 0 or 1 1 - suppress N/A Post error - invalid flag
value.

Recv - Successful
or Unsuccessful
completion

0 - no suppress 0 - no suppress 1- solicited
wait

Completion IS generated
WITH notification.

Recv - Successful
or Unsuccessful
completion

0 - no suppress 0 - no suppress 0 - no solicited
wait

Completion IS generated
WITHOUT notification.
 Page 293

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.8.2 COMPLETION STATUS

Any data transfer operation (that is, Send, Receive, RDMA Read, or
RDMA Write) or RMR operation (RMR Bind) returns its completion status
asynchronously via an event enqueued on an EVD.

If the completion status is anything other than DAT_DTO_SUCCESS for
DTOs and DAT_RMR_BIND_SUCCESS for RMR operations, the
connection to whose local Endpoint it is posted is broken.

The following table enumerates all the allowed values for DAT_DTO_
COMPLETION_STATUS.

For each value, a description of what that value means and whether a
given DTO can return that value for its completion status is shown.

DAT_DTO_COMPLETION_STATUS
value Description Applicable

Operations

DAT_DTO_SUCCESS The DTO completed successfully. Send, Receive,
RDMA Read,
RDMA Write, Send
with Invalidate,
RDMA Read to
RMR

DAT_DTO_ERR_LOCAL_LENGTH The length of the incoming DTO was
larger than the max_message_size
attribute of the Endpoint.

Receive

The total length of the receive buffer
associated with a Receive DTO was
too small to hold all the incoming
data from a Send DTO.

Receive

The length of the outgoing DTO was
larger than the max_message_size
attribute of the Endpoint.

Send, Send with
Invalidate

The length of the outgoing DTO was
larger than the max_rdma_size
attribute of the Endpoint.

RDMA Read,
RDMA Write,
RDMA Read to
RMR
 Page 294

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

DAT_DTO_ERR_LOCAL_EP An internal local Endpoint
consistency error was detected while
processing a DTO.

Send, Receive,
RDMA Read,
RDMA Write, Send
with Invalidate,
RDMA Read to
RMR

DAT_DTO_ERR_LOCAL_
PROTECTION

One of the segments in the local_iov
of the DTO caused a protection
violation when the DTO was
processed. Possible causes for this
error include the LMR in the segment
wasn't valid, the range specified by
the virtual_address and segment_
length in the dat_lmr_triplet segment
was outside the bounds of the LMR,
the Protection Zone associated with
the LMR didn't match the Protection
Zone of the Endpoint that the DTO
was posted to, or an attempt was
made to access the LMR in a way that
conflicted with its access permissions.

Send, Receive,
RDMA Read,
RDMA Write, Send
with Invalidate,
RDMA Read to
RMR

DAT_DTO_ERR_FLUSHED The Endpoint entered the DAT_EP_
STATE_DISCONNECTED state
before processing of the DTO could
begin.

Send, Receive,
RDMA Read,
RDMA Write, Send
with Invalidate,
RDMA Read to
RMR

DAT_DTO_ERR_BAD_RESPONSE The DTO operation that was posted to
the Request Queue was responded to
with an unexpected transport opcode.

Send, RDMA
Read, RDMA
Write, Send with
Invalidate, RDMA
Read to RMR

DAT_DTO_COMPLETION_STATUS
value Description Applicable

Operations
 Page 295

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
DAT_DTO_ERR_REMOTE_ACCESS A protection violation was detected at
the remote end when processing an
RDMA DTO operation. Possible
causes include a Protection Zone
mismatch between the dat_rmr_
context and the Endpoint that is
responding to the RDMA DTO
operation, an attempt being made to
do an RDMA Read or Write using an
dat_rmr_context that doesn't have
those permissions enabled, or an
attempt being made to do an RDMA
Read or Write when the responding
Endpoint doesn't have those
permissions enabled.

RDMA Read,
RDMA Write,
RDMA Read to
RMR, Send with
Invalidate

DAT_DTO_ERR_REMOTE_
RESPONDER

A DTO operation could not be
completed at the remote end. Possible
causes for this error include the
remote Endpoint experiencing a
condition causing a DAT_DTO_
ERR_LOCAL_EP error to be
returned.

Send, RDMA
Read, RDMA
Write, Send with
Invalidate, RDMA
Read to RMR

DAT_DTO_ERR_TRANSPORT The underlying transport could not
successfully transfer the data for the
DTO operation. Possible causes for
this error include the remote IA not
responding, the DTO data was
corrupted in the process of
transmission, or the network fabric
being used by the IA is broken.

Send, Receive,
RDMA Read,
RDMA Write, Send
with Invalidate,
RDMA Read to
RMR

DAT_DTO_ERR_RECEIVER_NOT_
READY

The DTO operation could not be
processed because the responding
side repeatedly indicated that it had
no resources to do so.

Send, RDMA
Read, RDMA
Write, Send with
Invalidate, RDMA
Read to RMR

DAT_DTO_ERR_PARTIAL_PACKET The data delivered by the Receive
DTO was truncated. The contents of
the receiver's buffer are unspecified.

Receive

DAT_DTO_COMPLETION_STATUS
value Description Applicable

Operations
 Page 296

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

As guaranteed by requirements (see Section g on page 41, Section h on
page 41, Section i on page 41), the DAT_SUCCESS only guarantees that
the local buffer can reused. The local buffer may be reused earlier,
dependent on the value of the Provider attribute iov_ownership_on_
return. For RDMA Read it means that the requested data is in the local
buffer. For RMR Bind it means that RMR is bound to the requested
memory. For Send and RDMA Write it does NOT mean that data have
reached the remote peer. For Recv it means that data have been received
into the local Recv buffer.

Consumer should not rely on the asynchronous return values defined in
the table above. Depending on the underlying RDMA Transport and the
Provider implementation these values may be returned. Consumer can
rely on these values defined for RDMA Read, Recv, and RMR Bind being
returned. For Send and RDMA Write Consumer can check the Provider
attribute dat_async_return_guarantee to determine if Provider
guarantees the defined return values for Send and RDMA Write.

The following table enumerates all the allowed values for DAT_RMR_
BIND_COMPLETION_STATUS. For each value, a description of what
that value means and whether an RMR Bind operation can return that
value.

DAT_DTO_COMPLETION_STATUS value Description

DAT_DTO_SUCCESS The DTO completed successfully.

DAT_DTO_ERR_LOCAL_EP An internal local Endpoint consistency error
was detected while processing a DTO.

DAT_DTO_ERR_FLUSHED The Endpoint entered the DAT_EP_STATE_
DISCONNECTED state before processing of
the DTO could begin.

DAT_RMR_OPERATION_FAILED An RMR operation failed due to a protection
violation. Possible causes for this error
include the LMR specified in the call was
invalid, the range specified by the virtual_
address and segment_length in the dat_lmr_
triplet in the call was outside the bounds of
the LMR, the Protection Zones associated
with the LMR, RMR, and Endpoint to which
the RMR Bind operation was posted didn't
match, or an attempt was made to grant
access through the RMR that conflicted with
the access allowed by either the LMR or the
Endpoint.
 Page 297

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
6.8.2.1 USAGE

DAT only provides minimal guarantees as to what successful completion
of a Send or RDMA Write operation means to the Consumer:

• The Consumer's local buffer for the request is no longer required by
the Provider. It may be released, re-used or altered.

• Barring a transport or remote host error the message/data will be
delivered to the remote peer at some time in the future or it may be
delivered already. The delivery will follow all the normal ordering
rules.

There are several things that are NOT guaranteed by DAT universally, but
which are guaranteed on some RDMA transports (such as InfiniBand).

• The payload is not guaranteed to already have been delivered to
remote peer memory.

• The target memory access requested is not guaranteed to have
been validated. An invalid matching Recv for Send or remote RDMA
Write request may not have been detected remotely until after the
Send or RDMA Write operation has been completed successfully
locally. The Send matching Recv is only guaranteed to be validated
before the destination's Recv completion. The RDMA Write target
buffer is guaranteed to be validated prior to completion of remote
Recv matching Send that was posted after the RDMA Write.

Provider may provide such guarantee, for example, because the
underlying RDMA Transport is InfiniBand that provides such a guarantee.
Consumer should check the Provider attribute for dto_async_return_
guarantee to see if the Provider makes the above additional guarantee.

Below are examples on how Consumer can design ULP to be transport
independent.

The first example is for Send. The sender must have a method to ensure
that a send is not transmitted until after a prior send has been received and
completed at the destination.

The second example is for RDMA Write. One method is based on a Send
after RDMA Write that is part of the a round-trip ping to the peer ULP after
successful Recv of the Send. The other method is using an RDMA Read
that uses RDMA Write RMR after RDMA Write to take advantage of RDMA
Transport round-trip for RDMA Read. The RDMA Read can be of size 0.

A peer ULP ping is accomplished by the peers exchanging send
messages. The Data Sink cannot receive the completion of the ping
message until after all prior RDMA Writes have been properly placed.
Therefore when the Data Source receives the ping reply message it knows
that all of the data sent has been received by the Data Sink.

An RDMA Read can be used to order writes even without requiring
interaction with the peer for each ordering guarantee.
 Page 298

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

The RDMA Read will not be replied by the remote side of the connection
until all prior RDMA Writes on the same connection have been placed. So
placing an RDMA Read between RDMA Writes can guarantee that the
second write will update target memory only after the first RDMA write's
updates have completed. The second RDMA Write must set DAT_
COMPLETION_BARRIER_FENCE_FLAG to ensure that RDMA Write
will not start until the previous RDMA Read has completed.

Consider the following sequence:

RDMA Write (rmr)

RDMA Read (rmr)

RDMA Write (barrier_fence)

RDMA Read

By the time first RDMA Read is completed the RDMA Write data has been
placed into the target buffer. But the remote peer may not be aware of it.
In order to notify the peer the Send can be used after the first RDMA
Read. Then successful completion of the Send matching Recv guarantee
that RDMA Write data have been delivered into target buffer. The second
RDMA Read is need for the second RDMA Write. The second RDMA
Write can use the same RMR as the first RDMA Write.

Using an RDMA Read ping, however, cannot guarantee that the peer
Data Sink will see both updates. The RDMA Read Reply can be
generated before the Data Sink ULP has noted the first updated memory.
This is true even if the Data Source posted a Send message between the
RDMA Writes.

Consider the following sequence:

RDMA Write

Send

RDMA Read

RDMA Write

Send

By the time the Data Sink reaps the completion matching the first Send it
knows that the first RDMA Write was fully placed. But the Data Sink does
not know that it is processing the completion before any of second RDMA
Write has been placed.

This is not merely a race condition. Portions of second RDMA Write may
have been placed before first Send was completed.

6.8.2.2 COMPLETION STATUS TRANSPORT MAPPINGS

Note to Provider: Following are mappings of the Completion Status
values to the Transport-defined entities.

For the InfiniBand transport, the following table maps the values in the
DAT_DTO_COMPLETION_STATUS and DAT_RMR_BIND_
 Page 299

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
COMPLETION_STATUS enumeration to their corresponding “Completion
Return Status” values, as specified in Volume 1, Chapter 11 of the
InfiniBand specification.

For the VIA transport, the following table maps the values in the DAT_
DTO_COMPLETION_STATUS and DAT_RMR_BIND_COMPLETION_
STATUS enumeration to their corresponding bits in the Descriptor Control
Segment “Status” field, as documented in the Appendix of the VIA
specification.

DAT_DTO_COMPLETION_STATUS and DAT_
RMR_BIND_COMPLETION_STATUS value IB “Completion Return Status” Name

DAT_DTO_SUCCESS Success

DAT_DTO_ERR_LOCAL_LENGTH Local Length Error

DAT_DTO_ERR_LOCAL_EP Local QP Operation Error

DAT_DTO_ERR_LOCAL_PROTECTION Local Protection Error

DAT_DTO_ERR_FLUSHED Work Request Flushed Error

DAT_DTO_ERR_BAD_RESPONSE Bad Response Error

DAT_DTO_ERR_REMOTE_ACCESS Remote Access Error

DAT_DTO_ERR_REMOTE_RESPONDER Remote Operation Error, or Remore Invalid
Request Error

DAT_DTO_ERR_TRANSPORT Transport Retry Counter Exceeded

DAT_DTO_ERR_RECEIVER_NOT_READY RNR Retry Counter Exceeded, or RNR NAK

DAT_DTO_ERR_PARTIAL_PACKET (Not applicable to the IB transport.)

DAT_RMR_OPERATION_FAILED Memory Window Bind Error

DAT_DTO_COMPLETION_STATUS and DAT_
RMR_BIND_COMPLETION_STATUS value VIA “Status Bit” Name

DAT_DTO_SUCCESS Done

DAT_DTO_ERR_LOCAL_LENGTH Local Length Error

DAT_DTO_ERR_LOCAL_EP Local Format Error

DAT_DTO_ERR_LOCAL_PROTECTION Local Protection Error

DAT_DTO_ERR_FLUSHED Descriptor Flushed

DAT_DTO_ERR_BAD_RESPONSE (Not applicable to the VIA transport.)
 Page 300

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

6.9 OPERATING SYSTEM SPECIFIC NOTES

This section addresses portions of the specification that are operating
system specific. Note that this section should not be taken as advice to
Providers for other operating systems to solve the problem in similar
ways. Specifically, providers on operating systems other than Windows®
or Unix® should feel free NOT to make distinctions between execution
contexts in general and signal/event-handling execution contexts in
particular.

6.9.1 UNIX® OPERATING SYSTEM SPECIFIC NOTES

Under Unix®, if a signal is handled by a thread while that thread is blocked
in dat_evd_wait or dat_cno_wait, that DAT call returns with an error of
DAT_INTERRUPTED_CALL. Note that applications should not rely on
this return code always occurring; if the signal arrives during the prologue
of the subroutine before the thread actually blocks, the fact that a signal
has arrived might be lost.

Consumers can unblock a waiting thread by posting dat_evd_post_se to
the EVD. This platform-independent method ensures that there is a
notification event on the EVD queue. If there is a race between dat_evd_
wait and dat_evd_post_se, since there is a notification event on the EVD,
the waiter will either be unblocked or it would not block at all. This is
subject to threshold value specified. In the worst case, Consumer may
need to post threshold number of SEs. The EVD must be configured to
support SE event stream. For a platform independent way of unblocking
dat_cno_wait see Section 6.3.2.3.1, “Usage,” on page 121.

Signal handlers are considered a nonstandard execution context within
the framework of the uDAPL specification. The Consumer may invoke
dat_ia_close to recover DAT resources as described in section 5.1 Local

DAT_DTO_ERR_REMOTE_ACCESS RDMA Protection Error

DAT_DTO_ERR_REMOTE_RESPONDER (Not applicable to the VIA transport.)

DAT_DTO_ERR_TRANSPORT Transport Error

DAT_DTO_ERR_RECEIVER_NOT_READY (Not applicable to the VIA transport.)

DAT_DTO_ERR_PARTIAL_PACKET Partial Packet Error

DAT_RMR_OPERATION_FAILED (There is no operation corresponding to an
RMR Bind in VIA, but this error can still be
returned from an IA that is utilizing the VIA
transport. The implementation synthesizes
the RMR operation for VIA.)

DAT_DTO_COMPLETION_STATUS and DAT_
RMR_BIND_COMPLETION_STATUS value VIA “Status Bit” Name
 Page 301

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
Resource Model 11) on page 34. Provider implementations are not
expected to be fully reentrant but are required to correctly implement the
dat_ia_close return codes described in section 6.2.1.2 DAT_IA_Close on
page 88. The quality of the Provider's implementation will determine the
precise set of scenarios where the provider will be able to successfully
close the IA. Semantics of all other uDAPL calls within the scope of a
UNIX® signal handler is undefined.

6.9.2 WINDOWS OPERATING SYSTEM SPECIFIC NOTES

APC's (asynchronous procedure calls) and SEH (structured exception
handlers) are considered nonstandard execution contexts within the
framework of the uDAPL specification. Calling dat_evd_post_se and dat_
ia_close are explicitly supported within both APCs and SEH's. Provider
implementations are not expected to be fully reentrant but are required to
correctly implement the dat_ia_close return codes described in section
6.2.1.2 DAT_IA_Close on page 88. The quality of the Provider's
implementation will determine the precise set of scenarios where the
Provider will be able to successfully close the IA. Semantics of all other
uDAPL calls within the scope of an Windows® APC or SEH is undefined.
 Page 302

uDAPLDocument uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 Page 303

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL-2.0 API Revision: April 20, 2006
VERSION 2.0
 Page 304

uDAPL Document Error Handling Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 7: ERROR HANDLING

The DAT_RETURN is a 3-tuple. The major status codes (DAT_RETURN_
TYPE) occupy the upper 16 bits of the 32-bit field. The detailed status
code (DAT_RETURN_SUBTYPE) occupies the lower 16 bits. The upper
2 bits of the major status code specify the class of the return. DAT defines
only three classes: DAT_CLASS_SUCCESS, DAT_CLASS_ERROR, and
DAT_CLASS_WARNING.

The major status code for both DAT_CLASS_SUCCESS and DAT_
CLASS_WARNING is always success. The warning can provide
additional information, for example, some resource is exhausted.

DAT supports a single error return definition per process (per registry) and
does not provide support for error code definitions per Provider.

If an error occurs, the Provider can return any applicable error. There is
no guarantee on which error among several possible errors is returned.

For the definitions of the Major and Minor status codes, see error header
file (Section A.5, “Generic Status Codes,” on page 395).

The dat_strerror operation defined below converts DAT_RETURN into
human readable strings.

7.1 DAT_STRERROR

Synopsis: DAT_RETURN

dat_strerror(

IN DAT_RETURN return,

OUT const char **major_message,

OUT const char **minor_message,

)

Parameters:

Description: The dat_strerror function converts a DAT return code into human readable
strings. The major_message is a string-converted DAT_TYPE_STATUS,

return: DAT function return value.

major_message: A pointer to a character string for the return major
status code.

minor_message: A pointer to a character string for the return detailed
status code.
 Page 305

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Error Handling Revision: April 20, 2006
VERSION 2.0
while minor_message is a string-converted DAT_SUBTYPE_STATUS. If
the return of this function is not DAT_SUCCESS, the values of major_
message and minor_message are not defined.

If an undefined DAT_RETURN value was passed as the return parameter,
the operation fails with DAT_INVALID_PARAMETER returned. The
operation succeeds when DAT_SUCCESS is passed in as the return
parameter.

Note for Provider: Implementation can allocate two static tables with a
string message for each major and minor return value, respectively; it can
use dat_return as an index into them.

Note to Provider: This API must be implemented in the same library as
the Registry APIs. It is shared between all Providers on the platform.

Note for Consumer: The string major and minor messages for each
return value is implementation-dependent and Consumers should not rely
on it to be the same for each Provider.

This operation is nonblocking, synchronous, and thread-safe.

Returns:

7.1.1 USAGE

7.1.2 RATIONALE

Splitting, the message between major and minor parts allows greater
flexibility for implementation for memory allocation. The Provider can
create two separate tables, one for type and one for subtype. This puts the
memory requirements for the type and subtype strings as linear in the
number of types and subtypes, rather than quadratic for all possible
combinations of types and subtypes.

One or both string arguments can be NULL.

7.1.3 MODEL IMPLICATIONS

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The return value
is invalid.
 Page 306

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 8: UDAPL PROVIDER MANAGEMENT

This chapter defines Interface Adapter enumeration and DAT Provider
management, as well as provides an example of Static Registry for
RedHat RPM and Windows.

This chapter also defines the DAT registry responsibilities and
requirements. The registry maps Interface Adapter names to Provider
libraries. It allows DAT Providers to register their libraries dynamically. It
also allows Consumers to open Interface Adapters by name and to
enumerate available Providers along with their library attributes. The
dynamic registry is instantiated at most once per address space, no
matter how many different Providers are in use.

8.1 OVERVIEW

8.1.1 INTERFACE ADAPTER

An Interface Adapter is an identified interface to an external network
available to a Consumer. It is identified by a printable text name that is
unique to the local host. As with all host-wide resources, the choice of
Interface Adapter names (ia_name) is under the control of the system
administrator.

Typically, an Interface Adapter is a physical port or set of ports on an HCA
or NIC. However, there is considerable flexibility in defining the mapping.
Multiple physical ports could be declared as a single Interface Adapter.
For example, this allows a Provider to provide automatic path migration to
a Consumer without Consumer involvement. Multiple IAs could be
declared for the same port for a variety of reasons. For example, a
different IA can be defined for each P-Key or VLAN.

8.1.2 PROVIDER MULTIPLE LIBRARIES

Each Provider can have multiple versions of itself installed on a system.
Only a single version of a Provider can be loaded within an address space
for any given IA name. The system administrator specifies a library for
each IA name that is opened by dat_ia_open. Consumers can use dat_
registry_list_providers to examine the IA names and the attributes of the
available Providers, if they want to determine whether an appropriate
Provider is available before they call dat_ia_open. If they need a library
with different attributes, they can request the system administrator to
provide the version with their needed attributes in the static registry.
Alternatively, they can install the version themselves in the static registry
if they have the appropriate privileges.

At most one library with a given name may be loaded in a single address
space. However, different libraries for the same Interface Adapter can be
 Page 307

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
loaded concurrently in different address spaces. For example, one
application may require thread safety, while another does not. It is the
Provider’s responsibility to coordinate the resource usage among their
open library instances.

In almost all cases, the Provider libraries instantiated in each Consumer
address space communicate with a single system-wide Provider Driver
that is the actual owner of the hardware resource. The Provider Driver is
documented here solely to clarify that Provider-specific code can interact
with the static registry and transport-specific naming and routing services
prior to the Provider library being loaded.

The division of responsibilities between the Provider library and any
system-wide supporting software is totally Provider-dependent. A Provider
may have each library interact directly with the hardware whenever its
design allows.

8.1.3 PROVIDER POLYMORPHISM

A major feature of the DAT API is that a Consumer can use a DAT handle
(type DAT_HANDLE) without having to know which Provider issued it.
With the exception of dat_ia_open and dat_ia_close, the methods defined
by this specification are not found in a symbol map. They are actually
macros that invoke the correct Provider-specific routine through a
Provider-supplied table. The dat_ia_open and dat_ia_close symbols are
defined in the registration code, not in the Provider library. dat_ia_
open and dat_ia_close call the Provider-specific open and close routines
specified in the dat_provider structure as part of their implementation.

DAT requires that every dat_handle created by a Provider has a dat_
provider pointer as its first field. This mechanism allows DAT to provide
multi-Provider polymorphism.

DAT Consumers must not attempt to access the dat_provider structure or
to bypass any DAT-supplied Provider routing. DAT Providers may assume
that their methods will be invoked only with their objects. They are allowed
to be more cautious in accepting parameters, but that is a per-Provider
implementation decision.

The size of any DAT object is known only by the Provider that created it
and are opaque to a Consumer. DAT objects may be destroyed only by
that Provider. The Consumer only has dat_handle to refer to Provider DAT
objects.

Once an Interface Adapter is open, the generated dat_handle for the
Provider allows the Consumer to interact directly with the Provider library.
The Dynamic Registry does not place itself in the performance path on a
per-call basis.
 Page 308

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

8.1.4 REGISTRY IMPLEMENTATION

The DAT Collaborative provides the sole implementation of the Registry
for use with all Providers per platform. It can be downloaded from
http://www.datcollaborative.org/registry.html.

The Provider MUST NOT install the Registry directly. Instead, the
Provider should point the system administrator to the Web site above as
the source for the latest version of the Registry for the platform. Provider
Installation should report back if the existing platform Registry version, if
it exists, works for the Installed Provider. If not, the Provider shall report
what minimal version of Registry it requires. If the Provider has a later
version of the Registry as part of its package, it can notify installer about
it along with the guidelines about how to install it safely. These guidelines
must be consistent with the Registry installation guidelines at
www.datcollaborative.org/registry.html for the platform.

Providers can include a copy of the latest Registry implementation for the
operating systems they support within their packaging for the
convenience of system administrators, display the version included in
their package versus the version currently installed, recommend a
minimum version that should be installed, or provide separate installation
instructions for updating the Registry implementation. But the
administrator has absolute control over which version is installed, and
must not be left without a Registry installed when any given Provider is
uninstalled.

8.2 REGISTRY APIS
Each DAT Provider must inform the DAT registration library of its identity
and provide pointers to the functions that implement its methods. The
DAT Registry supports at least five services: dat_ia_open, dat_ia_close,
dat_registry_add_provider, dat_registry_remove_provider, and dat_
registry_list_providers.

DAT registration library should support registration of multiple Providers.
As a rule of thumb it should support a double digit number of registered
Providers.

dat_ia_open and dat_ia_close perform the uDAPL/kDAPL-specific open
and close, as well as DAT registry-specific semantics. For example, these
registry semantics can do reference counting. The Provider cannot be
added to the registry multiple times, and it cannot be removed from the
registry while it is in use (even during dat_ia_close).
 Page 309

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
8.2.1 DAT_PROVIDER STRUCTURE

The dat_provider structure has the following fields:

All dat_handles created by the Provider must point to a structure that
begins with a dat_provider pointer. All other fields are at the discretion of
each Provider’s implementation.

8.2.2 CONSUMER EXPOSED APIS
8.2.2.1 DAT_REGISTRY_LIST_PROVIDERS

Synopsis typedef struct dat_provider_info {

char ia_name[DAT_NAME_MAX_LENGTH];

DAT_UINT32 dapl_version_major;

DAT_UINT32 dapl_version_minor;

DAT_BOOLEAN is_thread_safe;

} DAT_PROVIDER_INFO;

DAT_NAME_MAX_LENGTH includes the NULL character for string
termination.

DAT_RETURN

dat_registry_list_providers (

device_name The name of the Interface Adapter that the Provider wants to
provide. This typically follows Host OS conventions for
device names. This is the same as the DAT_PROVIDER_
INFO member ia_name, and the dat_ia_open argument ia_
name_ptr.

extension A void pointer that the Provider can use for its own data or
method extensions. This is particularly useful when the
same routines are registered as multiple Providers.

ia_open_func The routine that is invoked by the registration code of the
dat_ia_open(), specifying as a parameter the ia_name. A
Consumer specifies the ia_name. The open call is directed
to the correct Provider library if it can be found. Otherwise
the registry returns a DAT_INVALID_PARAMETER error
that is reported to the Consumer as DAT_NAME_NOT_
FOUND. Because this function is used by user and kernel
Consumers, it is specified in the kDAPL and uDAPL API
documents.

ia_close_func The routine that is invoked by the registration code of the
dat_ia_close(). It ensures that any registry-specific
functionality, as well as the Provider functionality, is
performed.

other functions All other function pointers for each uDAPL/kDAPL defined
functions. These exist only as function pointers in the
Provider table and not as symbols in kernel space.
 Page 310

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

IN DAT_COUNT max_to_return,

OUT DAT_COUNT *number_entries,

OUT DAT_PROVIDER_INFO *(dat_provider_list[])

)

Parameters:

Description: The Consumer obtains a list of available Providers from the Static
Registry. The information provided is the Interface Adapter name, the
uDAPL/kDAPL API version supported, and whether the provided version
is thread-safe. The Consumer can examine the attributes to determine
which (if any) Interface Adapters it wants to open. This operation has no
effect on the Registry itself.

The Registry can open an IA using a Provider whose dapl_version_minor
is larger than the one the Consumer requests if no Provider entry matches
exactly. Therefore, Consumers should expect that an IA can be opened
successfully as long as at least one Provider entry returned by dat_
registry_list_providers matches the ia_name, dapl_version_major, and
is_thread_safe fields exactly, and has a dapl_version_minor that is equal
to or greater than the version requested.

If the operation is successful the returned code is DAT_SUCCESS, then
number_entries indicates the number of entries filled by the registry in
dat_provider_list.

If the operation is not successful, then number_entries returns the number
of entries in the registry. Consumers can use this return to allocate dat_
provider_list large enough for the registry entries. This number is just a
snapshot at the time of the call and may be changed by the time of the
next call. If the operation is not successful, then the content of dat_
provider_list is not defined.

If dat_provider_list is too small, including pointing to NULL for the registry
entries, then the operation fails with the return DAT_INVALID_
PARAMETER.

dat_registry_list_providers is synchronous and thread safe.

max_to_return: Maximum number of entries that can be returned to the
Consumer in the dat_provider_list.

number_entries: The actual number of entries returned to the Consumer in
the dat_provider_list if successful or the number of
Providers available.

dat_provider_list: Points to an array of DAT_PROVIDER_INFO pointers
supplied by the Consumer. Each Provider’s information
will be copied to the destination specified.
 Page 311

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
Returns:

8.2.2.2 DAT_REGISTRY_PROVIDERS_RELATED

Synopsis DAT_RETURN

dat_registry_providers_related (

IN const DAT_NAME_PTR ia1_name_ptr,

IN const DAT_NAME_PTR ia2_name_ptr,

OUT DAT_HA_RELATIONSHIP *relationship)

)

Parameters:

Description: The dat_registry_providers_related let Consumer know whether two IAs
share HW resources.

dat_registry_providers_related is synchronous and thread safe.

Returns:

DAT_SUCCESS The operation was successful.

DAT_INVALID_
PARAMETER

Invalid parameter. For example, dat_provider_
list is too small or dat_provider_list NULL.

DAT_INTERNAL_ERROR Internal error. The DAT static registry is
missing.

ia1_name_ptr: Name of one IA.

ia2_name_ptr: Name of another IA.

relationship: Indicator of relationship between 2 IAs. DAT_HA_FALSE
indicates that the two IAs are not related, DAT_HA_TRUE
indicate that the two IAs are related, DAT_HA_
CONFLICTING indicates that 2 IAs do not agree on the
relationship, and DAT_HA_UNKNOWN indicating that
Registry can not find the answer, for example, one of the
Providers do not provide the underpinning to support this
operation.

DAT_SUCCESS The operation was successful.

DAT_INVALID_
PARAMETER

Invalid parameter. One of the IAs is unknown.

DAT_INTERNAL_ERROR Internal error. The DAT static registry is
missing.
 Page 312

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

8.2.2.2.1 USAGE

The operations allows Consumer to detect whether two IAs share
unrelying resources. This allows Consumer to build their own High
Availability over available IAs.

8.2.2.2.2 RATIONALE

8.2.2.2.3 MODEL IMPLICATIONS

DAT Registry ask each Provider for each IA if they are related. If they both
report the same thing the TRUE or FALSE answer is returned. If one of
them does not support this operation UNKNOWN is return. If Provider
disagree on the relationship CONFLICTING is returned to Consumer.
This may happen because the later Provider is aware of the relationship
but the earlier one is not.

DAT Registry expects each Provider to support internal DAT_
PROVIDER_HA_RELATED call.

8.2.3 CONSUMER NONEXPOSED APIS
8.2.3.1 DAT_REGISTRY_ADD_PROVIDER

Synopsis DAT_RETURN

dat_registry_add_provider (

IN const DAT_PROVIDER *provider,

IN const DAT_PROVIDER_INFO *provider_info

)

Parameters:

Description: The Provider declares itself with the Dynamic Registry. Each registration
provides an Interface Adapter to DAT. Each Provider must have a unique
name.

The same IA Name cannot be added multiple times. An attempt to register
the same IA Name again results in an error with the return code DAT_
PROVIDER_ALREADY_REGISTERED.

The contents of provider_info must be the same as those the Consumer
uses in the call to dat_ia_openv directly, or the ones provided indirectly
defined by the header files the Consumer compiled with.

Returns:

provider: Self-description of a Provider.

provider_info Attributes of the Provider.

DAT_SUCCESS The operation was successful.
 Page 313

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
8.2.3.2 DAT_REGISTRY_REMOVE_PROVIDER

Synopsis DAT_RETURN

dat_registry_remove_provider (

IN const DAT_PROVIDER*provider

)

Parameters:

Description: The Provider unregisters itself from the Dynamic Registry. It is the
Provider’s responsibility to complete its sessions. Removal of the
registration only prevents new sessions.

The Provider cannot be removed while it is in use. An attempt to remove
the Provider while it is in use results in an error with the return code DAT_
PROVIDER_IN_USE.

Returns:

8.2.4 PROVIDER-SUPPLIED APIS
The following APIs must be implemented by a Provider that supports
being loaded on demand (see Section 8.4.2, “Load on Demand,” on
page 319).

The entry points for these APIs must be exported as public symbols so the
Registry can locate and call them after loading the Provider library but
before the Provider calls dat_registry_add_provider to register its routing
table.

A Provider Library SHOULD NOT export any other symbols. Multiple
Provider Libraries will be loaded into the same address space, possibly

DAT_INSUFFICIENT_RESOURCES The maximum number of
Providers was already
registered.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_PROVIDER_ALREADY_
REGISTERED

Invalid or nonunique name.

provider: Self-description of a Provider.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The Provider was not
found.

DAT_PROVIDER_IN_USE The Provider was in use.
 Page 314

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

even multiple versions of the same Provider. Exporting any other symbols
that are not within a fully qualified namespace is likely to result in symbol
collisions.

8.2.4.1 DAT_PROVIDER_INIT

Synopsis void

dat_provider_init (

IN const DAT_PROVIDER_INFO *provider_info,

IN const char * instance_data

)

Parameters:

Description: A constructor the Registry calls on a Provider before the first call to dat_
ia_open for a given IA name when the Provider is auto-loaded. An
application that explicitly loads a Provider on its own can choose to use
dat_provider_init just as the Registry would have done for an auto-loaded
Provider.

The Provider’s implementation of this method must call dat_registry_add_
provider, using the IA name in the provider_info.ia_name field, to register
itself with the Dynamic Registry. The implementation must not register
other IA names at this time. Otherwise, the Provider is free to perform any
initialization it finds useful within this method.

This method is called before the first call to dat_ia_open for a given IA
name after one of the following has occurred:

• The Provider library was loaded into memory.
• The Registry called dat_provider_fini for that IA name.
• The Provider called dat_registry_remove_provider for that IA name

(but it is still the Provider indicated in the Static Registry).

If this method fails, it should ensure that it does not leave its entry in the
Dynamic Registry.

Returns: None.

8.2.4.2 DAT_PROVIDER_FINI

Synopsis void

provider_info: The information that was provided by the Consumer to
locate the Provider in the Static Registry.

instance_data: The instance data string obtained from the entry found in
the Static Registry for the Provider.
 Page 315

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
dat_provider_fini (

IN const DAT_PROVIDER_INFO *provider_info

)

Parameters:

Description: A destructor the Registry calls on a Provider before it disassociates the
Provider from a given IA name.

The Provider can use this method to undo any initialization it performed
when dat_provider_init was called for the same IA name. The Provider's
implementation of this method should call dat_registry_remove_provider
to unregister its IA Name. If it does not, the Registry might remove the
entry itself.

This method can be called for a given IA name at any time after all open
instances of that IA are closed, and is certainly called before the Registry
unloads the Provider library. However, it is not called more than once
without an intervening call to dat_provider_init for that IA name.

Returns: None.

8.3 DAT.H API VERSION AND THREAD SAFETY AUTO SUPPORT

8.3.1 COMPILE TIME API VERSION SUPPORT

The dat.h include file shall include #defines for DAT_VERSION_MAJOR
and DAT_VERSION_MINOR. These are constants of the same semantics
as the dat_version_major and dat_minor_version fields in the DAT_
PROVIDER_INFO struct.

8.3.2 THREAD SAFETY SUPPORT

To suppress the need for threadsafe code, the Consumer should add the
following before including dat.h:

• #define DAT_THREADSAFE DAT_FALSE

The Consumer can set DAT_THREADSAFE in source files, before
including any DAT header files, or set it as part of the project’s build
environment.

8.3.3 VERSION SUPPORT FOR IA OPEN

A Registry method is defined to accept versioned open calls: dat_ia_
openv.

dat.h includes the following macro:

#define dat_ia_open(name,qlen,async_evd,iah) \

provider_info: The information that was provided when dat_provider_init
was called.
 Page 316

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 dat_ia_openv((name),(qlen),(asynch_evd),(iah),\

 DAT_VERSION_MAJOR,DAT_VERSION_MINOR,DAT_THREADSAFE)

Consumers still invoke dat_ia_open as currently defined. The macro
automatically adds the correct version numbers and thread safety flag.

The registry library provides a dat_ia_open function as follows:

#undef dat_ia_open

DAT_RETURN dat_ia_open (

 IN const DAT_NAME_PTR ia_name_ptr,

 IN DAT_COUNT async_evd_min_qlen,

 INOUT DAT_EVD_HANDLE *async_evd_handle,

 OUT DAT_IA_HANDLE *ia_handle)

{

 return dat_ia_openv(ia_name_ptr,async_evd_min_qlen,

 async_evd_handle,ia_handle,1,0,

 DAT_TRUE);

}

So if the Consumer directly calls dat_ia_open, it means that it has the
original “dat.h” file without a dat_ia_open #define. Hence, they are using
a thread-safe version 1.0.

8.4 PROVIDER REGISTRY GUIDELINES

8.4.1 PROVIDER INSTALLATION ADVICE

Typically, installation of a DAT Provider requires installation of multiple
files and potentially an update of the Static Registry.

The files to be installed can include:

• Dynamically loadable kDAPL and/or uDAPL Provider libraries
• Supporting dynamically loadable libraries
• Statically linkable kDAPL and/or uDAPL Provider libraries
• Supporting statically linked libraries
• The Host OS specific implementation of the Registry
• Supporting executables (a Communications Manager, or other

supporting daemons, for example)
• Kernel device drivers

These files should be installed in accordance with normal Host Operating
System conventions for these types of files. Existing facilities to track
inter-component dependencies, such as Redhat Package Manager
(RPM) and Windows Registry, should be used when they are part of the
existing infrastructure.
 Page 317

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
The Host OS-specific implementation of the registry might need to be
installed or updated. For each Host OS, there is a designated name and
location.

The installation procedure must allow the system configuration to specify
the IA Name and location for files to be installed. A Provider should provide
defaults for these values.

The installation procedure should be fully logged according to existing
Host OS conventions. An uninstall procedure should be provided, if this is
not already part of the existing conventions.

The Provider should be aware that any system administrator is allowed to
edit the Static Registry at any time. The Provider must not assume that its
Static Registry entries are unchanged since the Provider's install script
was executed.

Editing of the Static Registry can be done at installation time or when the
device is loaded at run-time. The latter approach is best suited to support
plug-and-play. Editing of the Static Registry should follow normal
procedures for the host OS, but should be user-friendly. The install script
should edit the Registry with permission of the user, not ask the user to
edit the Static Registry.

Each entry in the Static Registry identifies an Interface Adapter name, the
library that must be loaded, and instance data. The instance data serves
many purposes: identifying the driver level resources to be used,
specifying options such as IB Partition Keys or VLANs, and other load-
time options.

Except as directed by the installer, the install script should not remove
prior versions of the Provider library. Nor should those entries be removed
from the Static Registry, although installation can certainly designate a
new default version.

The installation procedure should include an option to install the new
version without designating it as the new default.

It is important to remember that the Registry operates within a user
process. Device drivers and supporting daemons more typically have a
lifespan that exceeds any single user process. On some systems, drivers
can be loaded while any user process requires them. On others, they are
loaded at system boot time (or at first demand) and only unloaded by
explicit user action or a reboot.

A typical plug-and-play scenario would load the installed device driver, as
selected by existing plug-and-play procedures. It would then determine
what Interface Adapter names it will use, and register them with the Static
Registry.

Plug-and-play installations should include some provision to remove
entries after the driver is unloaded. This must include when the drivers are
unloaded by rebooting the system.
 Page 318

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

8.4.2 LOAD ON DEMAND

For uDAPL Consumers, the registry must support loading the Provider
library on demand. To do so the registry makes use of the static registry
(see “Static Registry” on page 320) to locate the Provider library that must
be loaded.

Normally, the library loaded will be for the default version of the Provider.
However, there may be OS-specific methods defined to allow an
alternative version of the Provider to be loaded for debugging and testing
purposes. The override mechanism must be available on a scope less
than the entire system, such as the current shell, working directory, or
user account. When the host OS supports environment variables, these
should be at least one method available to specify the override.

A Provider library loaded by other OS-specific methods must still register
with the Dynamic Registry but should not register with the Static Registry.
The registry must support all Provider libraries, not just those it loaded
directly.

8.4.3 DYNAMIC PROVIDER REGISTRATION

Providers register themselves dynamically using the dat_registry_add_
provider method, and may dynamically deregister themselves using the
dat_registry_remove_provider method.

Providers must register themselves with the IA name assigned to them by
the system administrator.

Provider libraries are responsible for ensuring the loading of any other
system components on which they rely, or at least for validating their
presence. For example, a Provider library frequently will be dependent on
a kernel mode driver to support critical OS-dependent operations, such as
pinning memory and registering interrupt handlers.

Provider libraries must dynamically register themselves with the registry,
even if they were loaded by the registry. Only the Provider instance itself
can properly initialize the DAT_PROVIDER structure identifying its
methods and know when it has completed its internal initialization.

Providers are responsible for ensuring that their behavior is consistent
with the data maintained by the IA selection service.

Providers that are loaded by the Registry must register themselves for a
particular IA name when the registry calls dat_provider_init, passing them
the IA name to register with. Providers that are explicitly bound (statically
or dynamically linked) to the Consumer must register themselves for all IA
names they will support before the Consumer makes its first call to dat_
ia_open.

The dynamic registry offers the following services to DAT Consumers:
 Page 319

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
1) dat_ia_open: The Consumer specifies the IA name and Library quali-
fiers. The open call is directed to the correct Provider library if it can
be found. Otherwise, the registry returns a “not found” error on its
own.

2) dat_ia_close: In addition to passing the close call through to the Pro-
vider library, the dynamic registry may track the total number of con-
current opens for each Provider library.

8.4.4 STATIC REGISTRY

The static registry is a persistent data resource maintained by system
administration when IA names are declared. The format is host OS-
specific. No run-time library is associated with it, beyond any already
defined by the host OS. Standard editing and access procedures for the
host OS must be used to maintain and reference the static registry.

RATIONALE: Use of an existing resource takes advantage of
authentication, backup, and auditing solutions already in place. Scattering
system configuration data makes reliable system administration,
particularly of multiple hosts, more difficult.

Entries are created when IA names are created. Normally entries would
be created during software installation, but this could also be done as the
result of a plug-and-play driver installation or system administration edits
of the configuration.

RATIONALE: Plug-and-play drivers are fully supported with this
approach. However, these drivers are dynamically declared once on a
system-wide basis. From the perspective of the single address space that
the dynamic registry operates in, they are just static registry entries,
whether they have existed for seconds or months.

The static registry offers the following service to DAT Consumers:

• dat_registry_list_providers: Allows a DAT Consumer to obtain a
snapshot of currently registered IA names and their attributes. This
includes those statically registered but not loaded.

8.4.4.1 STATIC REGISTRY ENTRY CONTENTS

Each static registry entry specifies the following:

• The IA name, as assigned by the system administrator or generated
by the Provider consistent with all constraints imposed by the system
administrator.

• The API version of the library.
• Whether the library is thread-safe.
• Any required instance data, such as the device identifier and partition

key. The same HCA or NIC driver may be referenced by multiple
Interface Adapter entries with just the instance data varying.

• The path name for the Provider library image to be loaded.
 Page 320

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

• The version of the Provider library. This should include a string
unique to the company that provides the Provider, as well as version
numbers.

• The Platform-specific information. This field is a string completely
under Platform control. This field is not passed to the Provider.

One entry per unique combination of IA name, API version, and thread-
safe attribute must be marked as the default entry. Other entries can be
selected via OS-specific override methods.

8.4.4.2 STATIC REGISTRY EDITING

The static registry must be in a format that is already supported by the
host OS. No special editing tools may be required. Solutions known to be
compatible with this requirement include the file system itself, text
configuration files, preference files, and system registries.

RATIONALE: If the host OS editing procedures support temporary edits
that are not persistent (for example, only until the next system restart),
then these edits should be used for plug-and-play originate entries.

By default, the static registry must be maintained on a system-wide basis.
However, local means for specifying default Registry entries must be
available. The methods and scope of local substitution are OS-specific.
Acceptable scopes include the user account, a specific process launch,
and the current working directory.

RATIONALE: Use of existing OS-specific mechanisms inherit the
maintenance, auditing, backup, and validation features from the OS
solution. No duplication of effort is required. Some form of local override
is required to enable testing of alternative configurations.

Providers, when adding a new entry to the dat.conf file, must fill the last
field for the Platform-specific information with an empty string. If Providers
edit the dat.conf file, it must adhere to the Platform rules, including rules
for this field.

Advice to Implementors: Platform can have a simple rule of not touching
the field by Providers. If an entry is deleted, the Platform can specify that
all the fields of the entry are deleted, including a Platform-specific field.

Rationale: Platform can use this field to maintain information needed for
Platform-specific administrative tools, including value-added platform
management.

8.4.5 UNIX AND WINDOWS STATIC REGISTRIES

For UNIX and Windows systems, the Static Registry is a text file named
dat.conf. The intention is for dat.conf to be located with other .conf files.
For the following systems, the location of dat.conf is as specified:

Operating System Location of dat.conf
Red Hat Linux /etc
 Page 321

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
All characters after the “#” on any line will be ignored. Lines on which there
are no characters other than white space and comments are considered
blank lines and are ignored. Each field can contain white space if the field
is quoted with double quotes. Within fields quoted with double quotes, the
following are valid escape sequences:

For all API versions, each nonblank line contains the following white
space-separated fields in order:

• The IA Name.
• The API version of the library: [“k”|”u"]major.minor. Examples: “k1.0”,

“u1.0”, and "u1.1".
• Whether the library is thread-safe: ["threadsafe"|"nonthreadsafe"]
• Whether this is the default section: ["default"|"nondefault"]
• The path name for the library image to be loaded.
• The version of the Provider: id.major.minor. Where “id” is a string

unique to the Provider company and “major” and “minor” are both
integers in decimal format. For example, “xyz.5.13”.

• A string with the instance data, which will be passed to the loaded
library as its run-time arguments.

• The Platform-specific information. This field is a string completely
under Platform control. This field is not passed to the Provider.

The format of the remaining fields on the line is dependent on the API
version of the library specified in that line. Future API versions might add
additional fields here.

The dat.conf file can be updated using normal file access procedures.
Providers can alter only lines they created themselves. The site
administrator can impose security restrictions on the file. Installers can be
forced to create the image they would have installed and ask the user to
complete the installation.

The following is an example of a dat.conf file:

dat.conf sample

for device hca1 - two IAs for different P-Keys

hca00 k1.0 nonthreadsafe default
/usr/local/foobarinc/kdapl.so xyz.2.3 "/dev/hca0 0" ““

Windows %SYSTEMDRIVE%/DAT

Sequence Effect
\\ backslash, \

\" quote, “
 Page 322

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

hca00 k1.0 nonthreadsafe nondefault
/usr/local/foobarinc/kdapl_old.so xyz.2.0 "/dev/hca0 0" ““

hca00 u1.0 nonthreadsafe default
/usr/local/foobarinc/udapl.so xyz.2.3 "/dev/hca0 0" ““

hca00 u1.0 nonthreadsafe nondefault
/usr/local/foobarinc/udapl_old.so xyz.2.0 "/dev/hca0 0" ““

hca01 k1.0 nonthreadsafe default
/usr/local/foobarinc/kdapl.so xyz.2.3 "/dev/hca0 1" ““

hca01 k1.0 nonthreadsafe nondefault
/usr/local/foobarinc/kdapl_old.so xyz.2.0 "/dev/hca0 1" ““

hca01 u1.0 nonthreadsafe default
/usr/local/foobarinc/udapl.so xyz.2.3 "/dev/hca0 1" ““

hca01 u1.0 nonthreadsafe nondefault
/usr/local/foobarinc/udapl_old.so xyz.2.0 "/dev/hca0 1" ““

for device hca1 - three different P-Keys

hca10 k1.0 nonthreadsafe default
/usr/local/foobarinc/kdapl.so xyz.2.3 "/dev/hca1 0" ““

hca10 k1.0 nonthreadsafe nondefault
/usr/local/foobarinc/kdapl_old.so xyz.2.0 "/dev/hca1 0" ““

hca10 u1.0 nonthreadsafe default
/usr/local/foobarinc/udapl.so xyz.2.3 "/dev/hca1 0" ““

hca10 u1.0 nonthreadsafe nondefault
/usr/local/foobarinc/udapl_old.so xyz.2.0 "/dev/hca1 0" ““

hca11 k1.0 nonthreadsafe default
/usr/local/foobarinc/kdapl.so xyz.2.3 "/dev/hca1 1" ““

hca11 k1.0 nonthreadsafe nondefault
/usr/local/foobarinc/kdapl_old.so xyz.2.0 "/dev/hca1 1" ““

hca11 u1.0 nonthreadsafe default
/usr/local/foobarinc/udapl.so xyz.2.3 "/dev/hca1 1" ““

hca11 u1.0 nonthreadsafe nondefault
/usr/local/foobarinc/udapl_old.so xyz.2.0 "/dev/hca1 1" ““

hca12 k1.0 nonthreadsafe default
/usr/local/foobarinc/kdapl.so xyz.2.3 "/dev/hca1 2" ““

hca12 k1.0 nonthreadsafe nondefault
/usr/local/foobarinc/kdapl_old.so xyz.2.0 "/dev/hca1 2" ““

hca12 u1.0 nonthreadsafe default
/usr/local/foobarinc/udapl.so xyz.2.3 "/dev/hca1 2" ““

hca12 u1.0 nonthreadsafe nondefault
/usr/local/foobarinc/udapl_old.so xyz.2.0 "/dev/hca1 2" ““

If the DAT_OVERRIDE environment variable is specified, it is taken as the
name of a file containing local override information. Each nonblank line of
this file contains the following white space-separated fields in order, for-
mats matching the values in the Static Registry file:
 Page 323

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
• The IA Name
• The API version of the library
• Whether the library is thread-safe
• The version of the Provider to use instead of the entry marked

“default” in the Static Registry
At most, one entry per unique combination of IA name, API version, and
thread-safe attribute can be specified in this file.
The following is an example of a local override file that indicates the older
version of the Provider specified in the Static Registry that should be used
for device hca0:
hca00 u1.0 nonthreadsafe xyz.2.0 ““ ““

hca01 u1.0 nonthreadsafe xyz.2.0 ““ ““

8.4.6 OTHER STATIC REGISTRY FORMATS

The format of the registry for other platforms will be specified by the DAT
Collaborative as reference implementations for those platforms are
developed.

8.4.7 REDHAT RPM INSTALLATION ADVICE

Per Section 8.4.1, “Provider Installation Advice,” on page 317, the
following requirements are placed on any DAT Provider packaged in RPM
(RedHat Package Manager) format.

8.4.7.1 GENERAL INSTALLATION

• The files automatically installed by the RPM should be in a Provider-
specific location (for example, /opt/<provider name>/...) rather than a
system default location (for example, /usr/lib/...).

• The files installed by the Provider should adhere to the current
version of the Filesystem Hierarchy Standard available at
http://www.pathname.com/fhs/.

8.4.7.2 EDITING DAT.CONF FILE

• The Provider post-install script SHOULD edit the /etc/dat.conf file to
include references to all Interface Adapters known to be supported
by the Provider.

• The Provider pre-uninstall script SHOULD edit the /etc/dat.conf file to
remove references to all Interface Adapters supported by the
Provider.

8.4.7.3 INTERACTION WITH SYSTEM REGISTRY

As per Section 8.1.4, it is not the Provider's responsibility to implement the
Static Registry; the Static Registry implementation for RedHat RPMs will
be provided by the DAT Collaborative. (See
www.datcollaborative.org/Registry.html.) That RPM has the name “dat-
registry” followed by the usual RPM version number; that version number
 Page 324

uDAPLDocument uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

is in the form <API major version>.<API minor version>.<registry
implementation version>. The Provider should follow the following
installation guidelines for interacting with this Registry:

• The Provider can ship a RedHat RPM provided by the DAT
Collaborative in its install package. However, the Provider can install
that RPM only if no DAT-Registry RPM is installed on the system or
the system administrator has in some way explicitly authorized that
installation.

• The package containing the Provider should include a dependency
on the DAT-Registry package. It can optionally include a
dependency on a specific version of the DAT-Registry package. If
that version of the DAT-Registry package is not and cannot be
installed, this dependency causes failure of the installation of the
Provider library and signals to the system administrator that the
Provider library must be upgraded.

8.4.7.4 SETTING THE DEFAULT PROVIDER

As per Section 8.4.1, the Provider must include an option by which it can
be installed without setting itself as the default Provider. The mechanism
used for this purpose is up to the Provider.

8.4.7.5 INSTALLATION OF MULTIPLE VERSIONS OF THE PROVIDER

Section 8.4.1 requires that installation of a Provider should not remove a
prior version of that Provider library unless so directed by the installer. For
RPM, this distinction is indicated by the installer based on whether they
use “rpm—install” or “rpm—upgrade” (indicating that previous versions
should be removed) in installing the Provider. However, to allow this
distinction, the Provider is required to avoid overwriting old versions of
itself with files from the newest install. In other words, the version number
of the Provider should be part of the pathway in which Provider files are
installed.
 Page 325

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document uDAPL Provider Management Revision: April 20, 2006
VERSION 2.0
 Page 326

uDAPL Document DAT Name Service Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

CHAPTER 9: DAT NAME SERVICE

DAT mandates that the host platform have a name service that translates
from host names to IPv4 or IPv6 addresses, and vice versa.

DAT defines IA addresses as IPv4 or IPv6, and defines host names as being DNS-
compatible.

All name service APIs supported for the platform’s IP name service must
be supported. Simply using the platform’s existing IP name service is a
way to accomplish this.

Rationale: There are a wide variety of name service APIs:
gethostbyaddr, gethostbyname, getipnodebyaddr, getipnodebyaadr,
and getaddrinfo. Each API is used by existing code and for a variety
of reasons. Supporting only a subset of standard APIs still forces
some existing code to be rewritten and/or the software development
staff to learn new APIs.

The site administrator may configure the DAT name service to simply
pass resolution operations through to the platform default IP name
service.

Rationale: Data can be exported from or imported to the existing IP
name service, which already supports the translations that DAT
requires. There is no need to create a new service.

A site administrator may choose to install a name service, which would
dynamically choose between multiple underlying name services.

Rationale: A dynamic name service would allow the site
administrator to partition naming data into transport-specific domains,
each with data only relevant to that transport.

All naming data returned by any API must be consistent, hence, the same,
regardless of which local name service that a Consumer is using.

Rationale: Installation of an override name service must not limit the
application developers’ choice of name service routines. Whether the
application developers want to use gethostbyaddr, getaddrinfo, or
another routine, their choice should not be limited by DAT.

Maintenance of the local IP/DNS naming data is the responsibility of the
site administrator. Implementation of any dynamic switching DAT name
service is the responsibility of the site administrator. Neither of these tasks
are the responsibility of the DAT Provider or the Consumer.
 Page 327

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document DAT Name Service Revision: April 20, 2006
VERSION 2.0
9.1 ADVICE TO CONSUMERS

DAT requires that an IA Address have a unique meaning within the scope
of a given host. That is, the meaning of the IA Address is not dependent
on the IA.

This requirement enables the host OS to offer a local routing service:
translating any given IA Address to an ordered list of paths to that
destination. (Of course, in an IP network, the “path” only specifies the first
step on that path, what interface is used to send the packet out on, and the
next IP address).

In either case, the starting point of the path is the IA Name of the interface
that should be opened.

Following are two example algorithms that a Consumer can use to
determine which IA to open without relying on a host routing service or
partially relying on a routing service.

9.1.1 FIND IA FOR A LOCAL IA ADDRESS

On most IP oriented systems, there is already a system authenticated
enumeration of IP interfaces. This enumeration is already fully intergrated
into IP routing and access permissions. Typically this list is available
through the ifconfig and/or netstat programs, as well as run-time
interfaces.

The existing IP Interface enumeration already typically provides a
mechanism for assigning alias IP Address, limiting an interface to a
specific VLAN, quality of service control and access control. There is no
need for the DAT Naming Service to duplicate these controls, and it would
be counter-productive for it to do so. Using the existing pre-RDMA
administrative controls avoids making new requirements on systems and
avoids duplicate administration.

For each platform there should be a mapping to identify an Interface
Adapter given the following:

• The IP Interface
• The RDMA Service to be used (if more than one RDMA Provider can

actually use a given IP interface, which will be the exception).
• Any RDMA specific options, such as selection of the LLP to be used

when multiple options exist. For example an RDMA Service could
support pre-IETF MPA, IETF MPA and SCTP all over the same set of
IP Interfaces.

9.1.2 FIND IA FOR A LOCAL IA ADDRESS

For Consumers that know which local IA address they want to use to reach
a remote node, here is the algorithm to follow:

1) The DAT Consumer calls dat_registry_list_providers.
 Page 328

uDAPL Document DAT Name Service Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

2) The DAT Consumer repeats the following steps until the IA with the
requested IA Address is found:

a) The DAT Consumer opens the next IA from the list.

i) If the list is exhausted and the IA with the requested IA Ad-
dress is not found, check the platform configuration or contact
your system administrator.

b) The DAT Consumer calls dat_ia_query to extract IA_Address of
the opened IA.

c) If IA Address matches, done.

d) Otherwise, close the IA and repeat the steps of 2.

It is assumed that the Consumer obtained a local IA Address it needs to
use. For example:

1) The DAT Consumer uses platform Name Service to obtain the IA Ad-
dress of the remote server based upon its host name.

2) The DAT Consumer uses platform Reachability Service to obtain the
local IA Address to be used to reach that remote IA Address.

9.1.3 FIND IA TO REACH REMOTE IA ADDRESS

For Consumers that know which remote IA Address they want to reach
but do not know which local IA Address to use, the following algorithm can
be used:

1) The DAT Consumer calls dat_registry_list_providers.

2) The DAT Consumer repeats the following steps until the IA that can
reach the remote IA Address is found:

a) The DAT Consumer opens the next IA from the list.

ii) If the list is exhausted and the IA with the requested IA Ad-
dress is not found, check the platform configuration or contact
your system administrator.

b) The DAT Consumer creates an Endpoint on the opened IA.

c) The DAT Consumer invokes dat_ep_connect to initiate the con-
nection to the requested remote IA Address.

d) If connection establishment succeeds or fails NOT with either
synchronous DAT_INVALID_ADDRESS, or asynchronously with
DAT_CONNECTION_EVENT_UNREACHABLE, this IA can be
used to reach the requested remote IA Address.

e) Otherwise, close the IA and repeat the steps of 2.

It is assumed that the Consumer obtained a remote IA Address it needs
to use. For example:

1) The DAT Consumer uses platform Name Service to obtain the IA Ad-
dress of the remote server based upon its host name.
 Page 329

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document DAT Name Service Revision: April 20, 2006
VERSION 2.0
 Page 330

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

APPENDIX A: UDAPL-2.0 HEADERS

This chapter defines uDAPL-2.0 header files. uDAPL Consumers need
include only the udat.h header file, which automatically includes all other
header files.

A.1 UDAT.H
/*

 * Copyright (c) 2002-2006, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the “Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the “The BSD License”. The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *
 Page 331

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: udat.h
 *

 * PURPOSE: defines the user DAT API

 *

 * Description: Header file for "uDAPL: User Direct Access
Programming

 * Library, Version: 2.0"
 Page 332

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * Mapping rules:

 * All global symbols are prepended with DAT_ or dat_

 * All DAT objects have an 'api' tag which, such as 'ep'
or 'lmr'

 * The method table is in the provider definition struc-
ture.

 *

 *

 *

**
*****/

#ifndef _UDAT_H_

#define _UDAT_H_

#include <dat/udat_config.h>

#include <dat/dat_platform_specific.h>

typedef enum dat_mem_type

{

 /* Shared between udat and kdat */

 DAT_MEM_TYPE_VIRTUAL = 0x00,

 DAT_MEM_TYPE_LMR = 0x01,

/* udat specific */

 DAT_MEM_TYPE_SHARED_VIRTUAL = 0x02

} DAT_MEM_TYPE;

/* dat handle types */

typedef enum dat_handle_type

{

 DAT_HANDLE_TYPE_CR,

 DAT_HANDLE_TYPE_EP,

 DAT_HANDLE_TYPE_EVD,

 DAT_HANDLE_TYPE_IA,

 DAT_HANDLE_TYPE_LMR,

 DAT_HANDLE_TYPE_PSP,

 DAT_HANDLE_TYPE_PZ,

 DAT_HANDLE_TYPE_RMR,
 Page 333

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_HANDLE_TYPE_RSP,

 DAT_HANDLE_TYPE_CSP,

DAT_HANDLE_TYPE_CNO,

 DAT_HANDLE_TYPE_EXTENSION_BASE

} DAT_HANDLE_TYPE;

/* EVD state consists of three orthogonal substates.

One for enabled/disabled,

one for waitable/unwaitable,

and one for configuration.

Within eachsubstates the values are mutually exclusive.
*/

typedef enum dat_evd_state

 {

 DAT_EVD_STATE_ENABLED =0x01,

 DAT_EVD_STATE_DISABLED =0x02,

DAT_EVD_STATE_WAITABLE =0x04,

DAT_EVD_STATE_UNWAITABLE =0x08,

DAT_EVD_STATE_CONFIG_NOTIFY =0x10,

DAT_EVD_STATE_CONFIG_SOLICITED =0x20,

DAT_EVD_STATE_CONFIG_THRESHOLD =0x30

} DAT_EVD_STATE;

typedef enum dat_evd_param_mask

{

 DAT_EVD_FIELD_IA_HANDLE = 0x01,

 DAT_EVD_FIELD_EVD_QLEN = 0x02,

 DAT_EVD_FIELD_EVD_STATE = 0x04,

 DAT_EVD_FIELD_CNO = 0x08,

 DAT_EVD_FIELD_EVD_FLAGS = 0x10,

 DAT_EVD_FIELD_ALL = 0x1F

} DAT_EVD_PARAM_MASK;

typedef DAT_UINT64_C DAT_PROVIDER_ATTR_MASK;

#include <dat/dat.h>
 Page 334

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

typedef DAT_HANDLE DAT_CNO_HANDLE;

struct dat_evd_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_COUNT evd_qlen;

 DAT_EVD_STATE evd_state;

 DAT_CNO_HANDLE cno_handle;

 DAT_EVD_FLAGS evd_flags;

 };

#define DAT_LMR_COOKIE_SIZE 40 /* size of DAT_LMR_COOKIE in
bytes */

typedef char (* DAT_LMR_COOKIE)[DAT_LMR_COOKIE_SIZE];

/* Format for OS wait proxy agent function */

typedef void (*DAT_AGENT_FUNC)

 (

 DAT_PVOID, /* instance data */

 DAT_EVD_HANDLE /* Event Dispatcher*/

);

/* Definition */

typedef struct dat_os_wait_proxy_agent

 {

 DAT_PVOID instance_data;

 DAT_AGENT_FUNC proxy_agent_func;

 } DAT_OS_WAIT_PROXY_AGENT;

/* Define NULL Proxy agent */

#define DAT_OS_WAIT_PROXY_AGENT_NULL \

 (DAT_OS_WAIT_PROXY_AGENT) {\

 (DAT_PVOID) NULL,\

 (DAT_AGENT_FUNC) NULL}

/* Flags */
 Page 335

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/* The value specified by the uDAPL Consumer for dat_ia_open
to indicate

 * that no async EVD should be created for the opening in-
stance of an IA.

 * The same IA has been open before that has the only async
EVD to

 * handle async errors for all open instances of the IA.

 */

#define DAT_EVD_ASYNC_EXISTS (DAT_EVD_HANDLE) 0x1

/*

 * The value returned by the dat_ia_query for the case when
there is no

 * async EVD for the IA instance. The Consumer specified the
value of

 * DAT_EVD_ASYNC_EXISTS for the async_evd_handle for dat_ia_
open.

 */

#define DAT_EVD_OUT_OF_SCOPE (DAT_EVD_HANDLE) 0x2

/*

 * Memory types

 *

 * Specifying memory type for LMR create. A Consumer must use
a single

 * value when registering memory. The union of any of these

 * flags is used in the Provider parameters to indicate what
memory

 * type Provider supports for LMR memory creation.

 */

/* For udapl only */

typedef struct dat_shared_memory

 {

 DAT_PVOID virtual_address;

 DAT_LMR_COOKIE shared_memory_id;

 } DAT_SHARED_MEMORY;
 Page 336

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

typedef union dat_region_description

 {

 DAT_PVOID for_va;

 DAT_LMR_HANDLE for_lmr_handle;

 DAT_SHARED_MEMORY for_shared_memory; /* For
udapl only */ } DAT_REGION_DESCRIPTION;

/* LMR Arguments */

struct dat_lmr_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_MEM_TYPE mem_type;

 DAT_REGION_DESCRIPTION region_desc;

 DAT_VLEN length;

 DAT_PZ_HANDLE pz_handle;

 DAT_MEM_PRIV_FLAGS mem_priv;

 DAT_VA_TYPE va_type;

 DAT_LMR_CONTEXT lmr_context;

 DAT_RMR_CONTEXT rmr_context;

 DAT_VLEN registered_size;

 DAT_VADDR registered_address;

 };

typedef struct dat_cno_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_OS_WAIT_PROXY_AGENT agent;

 } DAT_CNO_PARAM;

typedef enum dat_cno_param_mask

 {

 DAT_CNO_FIELD_IA_HANDLE = 0x1,

 DAT_CNO_FIELD_AGENT = 0x2,

 DAT_CNO_FIELD_ALL = 0x3

 } DAT_CNO_PARAM_MASK;
 Page 337

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/* General Provider attributes. udat specific. */

typedef enum dat_pz_support

 {

 DAT_PZ_UNIQUE,

 DAT_PZ_SHAREABLE

 } DAT_PZ_SUPPORT;

#include <dat/udat_vendor_specific.h>

/* Provider should support merging of all event stream types.
Provider

 * attribute specify support for merging different event
stream types.

 * It is a 2D binary matrix where each row and column repre-
sents an event

 * stream type. Each binary entry is 1 if the event streams
of its raw

 * and column can fed the same EVD, and 0 otherwise. The order
of event

 * streams in row and column is the same as in the definition
of

 * DAT_EVD_FLAGS: index 0 - Software Event, 1- Connection
Request,

 * 2 - DTO Completion, 3 - Connection event, 4 - RMR Bind
Completion,

 * 5 - Asynchronous event.

 * By definition each diagonal entry is 1.

 * Consumer allocates an array for it and passes it IN as a
pointer

 * for the array that Provider fills. Provider must fill the
array

 * that Consumer passes.

 */

struct dat_provider_attr

 {

 char provider_name[DAT_NAME_MAX_LENGTH];

 DAT_UINT32 provider_version_major;

 DAT_UINT32 provider_version_minor;

 DAT_UINT32 dapl_version_major;

 DAT_UINT32 dapl_version_minor;
 Page 338

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_MEM_TYPE lmr_mem_types_supported;

 DAT_IOV_OWNERSHIP iov_ownership_on_return;

 DAT_QOS dat_qos_supported;

 DAT_COMPLETION_FLAGS completion_flags_supported;

 DAT_BOOLEAN is_thread_safe;

 DAT_COUNT max_private_data_
size;

 DAT_BOOLEAN supports_multi-
path;

 DAT_EP_CREATOR_FOR_PSP ep_creator;

 DAT_PZ_SUPPORT pz_support;

 DAT_UINT32 optimal_buffer_
alignment;

 const DAT_BOOLEAN evd_stream_merging_sup-
ported[6][6];

 DAT_BOOLEAN srq_supported;

 DAT_COUNT srq_watermarks_supported;

 DAT_BOOLEAN srq_ep_pz_difference_supported;

 DAT_COUNT srq_info_supported;

 DAT_COUNT ep_recv_info_supported;

 DAT_BOOLEAN lmr_sync_req;

 DAT_BOOLEAN dto_async_return_guaranteed;

 DAT_BOOLEAN rdma_write_for_rdma_read_req;

 DAT_BOOLEAN rdma_read_lmr_rmr_context_expo-
sure;

 DAT_RMR_SCOPE rmr_scope_supported;

 DAT_BOOLEAN is_signal_safe;

 DAT_BOOLEAN ha_supported;

 DAT_HA_LB ha_loadbalancing;

 DAT_COUNT num_provider_specific_attr;

 DAT_NAMED_ATTR * provider_specific_attr;

 };

#define DAT_PROVIDER_FIELD_PROVIDER_NAME UINT64_
C(0x00000001)

#define DAT_PROVIDER_FIELD_PROVIDER_VERSION_MAJOR UINT64_
C(0x00000002)

#define DAT_PROVIDER_FIELD_PROVIDER_VERSION_MINOR UINT64_
C(0x00000004)
 Page 339

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
#define DAT_PROVIDER_FIELD_DAPL_VERSION_MAJOR UINT64_
C(0x00000008)

#define DAT_PROVIDER_FIELD_DAPL_VERSION_MINOR UINT64_
C(0x00000010)

#define DAT_PROVIDER_FIELD_LMR_MEM_TYPE_SUPPORTED UINT64_
C(0x00000020)

#define DAT_PROVIDER_FIELD_IOV_OWNERSHIP UINT64_
C(0x00000040)

#define DAT_PROVIDER_FIELD_DAT_QOS_SUPPORTED UINT64_
C(0x00000080)

#define DAT_PROVIDER_FIELD_COMPLETION_FLAGS_SUPPORTED
UINT64_C(0x00000100)

#define DAT_PROVIDER_FIELD_IS_THREAD_SAFE UINT64_
C(0x00000200)

#define DAT_PROVIDER_FIELD_MAX_PRIVATE_DATA_SIZE UINT64_
C(0x00000400)

#define DAT_PROVIDER_FIELD_SUPPORTS_MULTIPATH UINT64_
C(0x00000800)

#define DAT_PROVIDER_FIELD_EP_CREATOR UINT64_C(0x0001000)

#define DAT_PROVIDER_FIELD_PZ_SUPPORT UINT64_C(0x0002000)

#define DAT_PROVIDER_FIELD_OPTIMAL_BUFFER_ALIGNMENT UINT64_
C(0x00004000)

#define DAT_PROVIDER_FIELD_EVD_STREAM_MERGING_SUPPORTED
UINT64_C(0x00008000)

#define DAT_PROVIDER_FIELD_SRQ_SUPPORTED UINT64_
C(0x00010000)

#define DAT_PROVIDER_FIELD_SRQ_WATERMARKS_SUPPORTED UINT64_
C(0x00020000)

#define DAT_PROVIDER_FIELD_SRQ_EP_PZ_DIFFERENCE_SUPPORTED
UINT64_C(0x00040000)

#define DAT_PROVIDER_FIELD_SRQ_INFO_SUPPORTED UINT64_
C(0x00080000)

#define DAT_PROVIDER_FIELD_EP_RECV_INFO_SUPPORTED UINT64_
C(0x00100000)

#define DAT_PROVIDER_FIELD_LMR_SYNC_REQ UINT64_
C(0x000200000)

#define DAT_PROVIDER_FIELD_DTO_ASYNC_RETURN_GUARANTEED
UINT64_C(0x000400000)

#define DAT_PROVIDER_FIELD_RDMA_WRITE_FOR_RDMA_READ_REQ
UINT64_C(0x000800000)

#define DAT_PROVIDER_FIELD_RDMA_READ_LMR_RMR_CONTEXT_EXPO-
SURE UINT64_C(0x001000000)

#define DAT_PROVIDER_FIELD_RMR_SCOPE UINT64_C(0x002000000)
 Page 340

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#define DAT_PROVIDER_FIELD_IS_SIGNAL_SAFE UINT64_
C(0x004000000)

#define DAT_PROVIDER_FIELD_HA UINT64_C(0x008000000)

#define DAT_PROVIDER_FIELD_HA_LB UINT64_C(0x010000000)

#define DAT_PROVIDER_FIELD_NUM_PROVIDER_SPECIFIC_ATTR
UINT64_C(0x020000000)

#define DAT_PROVIDER_FIELD_PROVIDER_SPECIFIC_ATTR UINT64_
C(0x040000000)

#define DAT_PROVIDER_FIELD_ALL UINT64_C(0x07FFFFFFF)

#define DAT_PROVIDER_FIELD_NONE UINT64_C(0x0)

/***
*****/

/*

 * User DAT function call definitions,

 */

extern DAT_RETURN dat_lmr_create (
 IN DAT_IA_HANDLE, /* ia_handle */

 IN DAT_MEM_TYPE, /* mem_type */

 IN DAT_REGION_DESCRIPTION,/* region_descrip-
tion */

 IN DAT_VLEN, /* length */

 IN DAT_PZ_HANDLE, /* pz_handle */

 IN DAT_MEM_PRIV_FLAGS, /* privileges */

 IN DAT_VA_TYPE, /* va_type */

 OUT DAT_LMR_HANDLE *, /* lmr_handle */

 OUT DAT_LMR_CONTEXT *,/* lmr_context */

 OUT DAT_RMR_CONTEXT *,/* rmr_context */

 OUT DAT_VLEN *, /* registered_length */

 OUT DAT_VADDR *); /* registered_address */

/* Event Functions */

extern DAT_RETURN dat_evd_create (
 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_COUNT, /* evd_min_qlen
*/
 Page 341

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 IN DAT_CNO_HANDLE, /* cno_handle
*/

 IN DAT_EVD_FLAGS, /* evd_flags
*/

 OUT DAT_EVD_HANDLE *); /* evd_handle
*/

extern DAT_RETURN dat_evd_modify_cno (
 IN DAT_EVD_HANDLE, /* evd_handle */

 IN DAT_CNO_HANDLE); /* cno_handle */

extern DAT_RETURN dat_cno_create (
 IN DAT_IA_HANDLE, /* ia_handle */

 IN DAT_OS_WAIT_PROXY_AGENT,/* agent */

 OUT DAT_CNO_HANDLE *); /* cno_handle */

extern DAT_RETURN dat_cno_modify_agent (
 IN DAT_CNO_HANDLE, /* cno_handle */

 IN DAT_OS_WAIT_PROXY_AGENT);/* agent */

extern DAT_RETURN dat_cno_query (
 IN DAT_CNO_HANDLE, /* cno_handle
*/

 IN DAT_CNO_PARAM_MASK, /* cno_param_mask
*/

 OUT DAT_CNO_PARAM *); /* cno_param
*/

extern DAT_RETURN dat_cno_free (
 IN DAT_CNO_HANDLE); /* cno_handle
*/

extern DAT_RETURN dat_cno_wait (
 IN DAT_CNO_HANDLE, /* cno_handle */

 IN DAT_TIMEOUT, /* timeout */

 OUT DAT_EVD_HANDLE *); /* evd_handle */

extern DAT_RETURN dat_evd_enable (
 IN DAT_EVD_HANDLE); /* evd_handle
*/
 Page 342

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

extern DAT_RETURN dat_evd_wait (
 IN DAT_EVD_HANDLE, /* evd_handle */

 IN DAT_TIMEOUT, /* timeout */

 IN DAT_COUNT, /* threshold */

 OUT DAT_EVENT *, /* event */

 OUT DAT_COUNT *); /* N more events */

extern DAT_RETURN dat_evd_disable (
 IN DAT_EVD_HANDLE); /* evd_handle */

extern DAT_RETURN dat_evd_set_unwaitable (
 IN DAT_EVD_HANDLE); /* evd_handle */

extern DAT_RETURN dat_evd_clear_unwaitable (
 IN DAT_EVD_HANDLE); /* evd_handle */

#endif /* _UDAT_H_ */

A.2 UDAT_CONFIG.H
/ * Copyright (c) 2002-2006, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *
 Page 343

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 Page 344

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * POSSIBILITY OF SUCH DAMAGE.

 */

/***

 *

 * HEADER: udat_config.h

 *

 * PURPOSE: provides uDAPL configuration information.

 *

 * Description: Header file for "uDAPL: User Direct Access
Programming

 * Library, Version: 2.0"
 *

**
*****/

#ifndef _UDAT_CONFIG_H_

#define _UDAT_CONFIG_H_

#define DAT_VERSION_MAJOR 1

#define DAT_VERSION_MINOR 2

/*

 * The official header files will default DAT_THREADSAFE to
DAT_TRUE. If

 * your project does not wish to use this default, you must
ensure that

 * DAT_THREADSAFE will be set to DAT_FALSE. This may be done
by an

 * explicit #define in a common project header file that is
included

 * before any DAT header files, or through command line di-
rectives to the

 * compiler (presumably controlled by the make environment).

 */

/*

 * A site, project or platform may consider setting an al-
ternate default
 Page 345

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * via their make rules, but are discouraged from doing so
by editing

 * the official header files.

 */

/*

 * The Reference Implementation is not Thread Safe. The Ref-
erence

 * Implementation has chosen to go with the first method and
define it

 * explicitly in the header file.

 */

#define DAT_THREADSAFE DAT_FALSE

#ifndef DAT_THREADSAFE

#define DAT_THREADSAFE DAT_TRUE

#endif /* DAT_THREADSAFE */

#endif /* _UDAT_CONFIG_H_ */

A.3 DAT_PLATFORM_SPECIFIC.H
/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0". The
license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see
 Page 346

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 Page 347

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: dat_platform_specific.h

 *

 * PURPOSE: defines Platform-specific types.

 *

 * Description: Header file for "DAPL: Direct Access Program-
ming

 * Library, Version: 2.0"
 * Mapping rules:

 *

****/

#ifndef _DAT_PLATFORM_SPECIFIC_H_

#define _DAT_PLATFORM_SPECIFIC_H_

/* OS, processor, compiler type definitions. Add OSes as
needed. */

/*

 * This captures the alignment for the bus transfer from the
HCA/IB chip

 * to the main memory.

 */

#ifndef DAT_OPTIMAL_ALIGNMENT

#define DAT_OPTIMAL_ALIGNMENT 256 /* Performance
optimal alignment */

#endif /* DAT_OPTIMAL_ALIGNMENT */

/* Assume all OSes use sockaddr, for address family: IPv4 ==
AF_INET,

 * IPv6 == AF_INET6. Use of "namelen" field indicated.

 *
 Page 348

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * The Interface Adapter Address names an Interface Adapter
local or

 * remote, * that is used for connection management and Name

 * Service. The format of the dat_ia_address_ptr follows the
normal

 * socket programming practice of struct sockaddr *. DAT sup-
ports both

 * IPv4 and IPv6 address families. Allocation and initial-
ization of

 * DAT IA address structures must follow normal Sockets pro-
gramming

 * procedures. The underlying type of the DAT IA address is
the native

 * struct sockaddr for each target operating system. In all
cases,

 * storage appropriate for the address family in use by the
target

 * Provider must be allocated. For instance, when IPv6 ad-
dressing is

 * in use, this should be allocated as struct sockaddr_net6.
The

 * sockaddr sa_family and, if present, sa_len fields must be

 * initialized appropriately, as well as the address infor-
mation.

 * When passed across the DAPL API this storage is cast to the

 * DAT_IA_ADDRESS_PTR type. It is the responsibility of the
callee to

 * verify that the sockaddr contains valid data for the re-
quested

 * operation. It is always the responsibility of the caller
to manage

 * the storage.

 *

 * uDAPL code example for Linux (kdapl would be similar):

 * #include <stdio.h>

 * #include <sys/socket.h>

 * #include <netinet/in.h>

 * #include <dat/udat.h>

 *

 * struct sockaddr_in6 addr;

 * DAT_IA_ADDRESS_PTR ia_addr;

 *
 Page 349

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
* // Note: linux pton requires explicit encoding of IPv4 in
IPv6

 *

 * addr.sin6_family = AF_INET6;

 * if (inet_pton(AF_INET6, "0:0:0:0:0:FFFF:192.168.0.1",

 * &addr.sin6_addr) <= 0)

 * return(-1); // Bad address or no address family support

*

* // initialize other necessary fields such as port, flow,
etc.

 *

 * ia_addr = (DAT_IA_ADDRESS_PTR) &addr;

 * dat_ep_connect(ep_handle, ia_addr, conn_qual, timeout, 0,
NULL,

 * qos, DAT_CONNECT_DEFAULT_FLAG);

 *

 */

/* Solaris begins */

#if defined (sun) || defined(__sun) || defined(_sun_) || de-
fined (__solaris__) /* Solaris */

#include <sys/types.h>

#include <inttypes.h>/* needed for UINT64_C() macro */

typedef uint32_t DAT_UINT32; /* Unsigned
host order, 32 bits */

typedef uint64_t DAT_UINT64; /* unsigned
host order, 64 bits */

typedef unsigned long longDAT_UVERYLONG; /* unsigned
longest native to compiler */

typedef void * DAT_PVOID;

typedef int DAT_COUNT;

#include <sys/socket.h>

#include <netinet/in.h>

typedef struct sockaddr DAT_SOCK_ADDR; /* Socket ad-
dress header native to OS */

typedef struct sockaddr_in6 DAT_SOCK_ADDR6; /* Socket ad-
dress header native to OS */
 Page 350

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#define DAT_AF_INET AF_INET

#define DAT_AF_INET6 AF_INET6

typedef DAT_UINT64 DAT_PADDR;

/* Solaris ends */

/* Linux begins */

#elif defined(__linux__) /* Linux */

#if defined(__KERNEL__)

#include <linux/types.h>

#else

#include <sys/types.h>

#endif /* defined(__KERNEL__) */

typedef u_int32_t DAT_UINT32; /* unsigned
host order, 32 bits */

typedef u_int64_t DAT_UINT64; /* unsigned
host order, 64 bits */

typedef unsigned long longDAT_UVERYLONG; /* unsigned
longest native to compiler */

typedef void * DAT_PVOID;

typedef int DAT_COUNT;

typedef DAT_UINT64 DAT_PADDR;

#ifndef UINT64_C

#define UINT64_C(c)c ## ULL

#endif /* UINT64_C */

#if defined(__KERNEL__)

#include <linux/socket.h>

#include <linux/in.h>

#include <linux/in6.h>

#else

#include <sys/socket.h>

#endif /* defined(__KERNEL__) */

typedef struct dat_comm {
 Page 351

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
int domain;

int type;

int protocol;

} DAT_COMM

typedef struct sockaddr DAT_SOCK_ADDR; /* Socket ad-
dress header native to OS */

typedef struct sockaddr_in6 DAT_SOCK_ADDR6; /* Socket ad-
dress header native to OS */

#define DAT_AF_INET AF_INET

#define DAT_AF_INET6 AF_INET6

/* Linux ends */

/* Win32 begins */

#elif defined(_MSC_VER) || defined(_WIN32) /* NT. MSC com-
piler, Win32 platform */

typedef unsigned __int32 DAT_UINT32; /* Unsigned
host order, 32 bits */

typedef unsigned __int64 DAT_UINT64; /* unsigned
host order, 64 bits */

typedef unsigned longDAT_UVERYLONG; /* unsigned longest na-
tive to compiler */

typedef void * DAT_PVOID;

typedef long DAT_COUNT;

typedef struct sockaddr DAT_SOCK_ADDR; /* Socket address
header native to OS */

typedef struct sockaddr_in6 DAT_SOCK_ADDR6; /* Socket ad-
dress header native to OS */

#ifndef UINT64_C

#define UINT64_C(c) c ## i64

#endif /* UINT64_C */

#define DAT_AF_INET AF_INET

#define DAT_AF_INET6 AF_INET6
 Page 352

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#if defined(__KDAPL__)

/* must have the DDK for this definition */

typedef PHYSICAL_ADDRESS DAT_PADDR;

#endif /* __KDAPL__ */

/* Win32 ends */

#else

#error dat_platform_specific.h : OS type not defined

#endif

#ifndef IN

#define IN

#endif

#ifndef OUT

#define OUT

#endif

#ifndef INOUT

#define INOUT

#endif

#endif /* _DAT_PLATFORM_SPECIFIC_H_ */

A.4 DAT.H
/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *
 Page 353

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 Page 354

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/***

 *

 * HEADER: dat.h

 *

 * PURPOSE: defines the common DAT API for uDAPL and kDAPL.

 *

 * Description: Header file for "DAPL: Direct Access Pro-
gramming

 * Library, Version: 2.0"

 *

 * Mapping rules:

 * All global symbols are prepended with DAT_ or dat_

 * All DAT objects have an 'api' tag which, such as 'EP'
or 'LMR'

 * The method table is in the provider definition struc-
ture.

 *

 *

**
*****/

#ifndef _DAT_H_

#define _DAT_H_

#include <dat/dat_error.h>

/* Generic DAT types */

typedef char * DAT_NAME_PTR; /* Format for ia_name and
attributes */

#define DAT_NAME_MAX_LENGTH 256
 Page 355

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/*

 * Used for provider, vendor, transport, hardware-specific
attributes

 * definitions.

 */

typedef struct dat_named_attr

 {

 const char * name; /* Name of attribute */

 const char * value; /* Value of attribute */

 } DAT_NAMED_ATTR;

typedef enum dat_boolean

 {

 DAT_FALSE = 0,

 DAT_TRUE = 1

 } DAT_BOOLEAN;

#define DAT_IB_EXTENSION 1

#define DAT_IW_EXTENSION 2

typedef DAT_UINT32 DAT_HA_LB;

#define DAT_HA_LB_NONE (DAT_HA_LB)0

#define DAT_HA_LB_INTERCOMM (DAT_HA_LB)1

#define DAT_HA_LB_INTRACOMM (DAT_HA_LB)2

typedef union dat_context

 {

 DAT_PVOID as_ptr;

 DAT_UINT64 as_64;

 DAT_UVERYLONG as_index;

 } DAT_CONTEXT;

typedef DAT_CONTEXT DAT_DTO_COOKIE;

typedef DAT_CONTEXT DAT_RMR_COOKIE;

typedef enum dat_completion_flags

 {
 Page 356

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 /* Completes with notifica-
tion */

 DAT_COMPLETION_DEFAULT_FLAG = 0x00,

 /* Completions suppressed if suc-
cessful */

 DAT_COMPLETION_SUPPRESS_FLAG = 0x01,

 /* Sender controlled notification for recv completion
*/

 DAT_COMPLETION_SOLICITED_WAIT_FLAG = 0x02,

 /* Completions with unsignaled notifica-
tions */

 DAT_COMPLETION_UNSIGNALLED_FLAG = 0x04,

/* Do not start processing until all previous RDMA reads
complete. */

DAT_COMPLETION_BARRIER_FENCE_FLAG = 0x08,

/* Only valid for uDAPL as EP attribute for Recv Comple-
tion flags.

 * Waiter unblocking is controlled by the Threshold value
of dat_evd_wait.

 * UNSIGNALLED for RECV is not allowed when EP has this
attribute. */

DAT_COMPLETION_EVD_THRESHOLD_FLAG = 0x10

} DAT_COMPLETION_FLAGS;

typedef DAT_UINT32 DAT_TIMEOUT; /* microseconds
*/

/* timeout = infinity */

#define DAT_TIMEOUT_INFINITE ((DAT_TIMEOUT) ~0)

/* dat handles */

typedef DAT_PVOID DAT_HANDLE;

typedef DAT_HANDLE DAT_CR_HANDLE;

typedef DAT_HANDLE DAT_EP_HANDLE;

typedef DAT_HANDLE DAT_EVD_HANDLE;
 Page 357

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
typedef DAT_HANDLE DAT_IA_HANDLE;

typedef DAT_HANDLE DAT_LMR_HANDLE;

typedef DAT_HANDLE DAT_PSP_HANDLE;

typedef DAT_HANDLE DAT_PZ_HANDLE;

typedef DAT_HANDLE DAT_RMR_HANDLE;

typedef DAT_HANDLE DAT_RSP_HANDLE;

typedef DAT_HANDLE DAT_SRQ_HANDLE;

typedef DAT_HANDLE DAT_CSP_HANDLE;

typedef enum dat_dtos

 {

 DAT_SEND,

 DAT_RDMA_WRITE,

 DAT_RDMA_READ,

 DAT_RECEIVE,

 DAT_RECEIVE_WITH_INVALIDATE,

DAT_DTO_EXTENSION_BASE /* To be used by DAT extensions

as a starting point of extension DTOs */

} DAT_DTOS;

/* dat NULL handles */

#define DAT_HANDLE_NULL ((DAT_HANDLE)NULL)

typedef DAT_SOCK_ADDR * DAT_IA_ADDRESS_PTR;

typedef DAT_UINT64 DAT_CONN_QUAL;

typedef DAT_UINT64 DAT_PORT_QUAL;

/* QOS definitions */

typedef enum dat_qos

 {

 DAT_QOS_BEST_EFFORT = 0x00,

 DAT_QOS_HIGH_THROUGHPUT = 0x01,

 DAT_QOS_LOW_LATENCY = 0x02,

 /* not low latency, nor high throughput */

 DAT_QOS_ECONOMY = 0x04,

 /* both low latency and high throughput */

 DAT_QOS_PREMIUM = 0x08

 } DAT_QOS;
 Page 358

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

/*

 * FLAGS

 */

/* for backward compatibility */

#define DAT_CONNECT_MULTIPATH_REQUESTED_FLAG DAT_CONNECT_
MULTIPATH_FLAG

typedef enum dat_connect_flags

 {

 DAT_CONNECT_DEFAULT_FLAG = 0x00,

 DAT_CONNECT_MULTIPATH_REQUESTED_FLAG = 0x01,

 DAT_CONNECT_MULTIPATH_REQUIRED_FLAG = 0x02

 } DAT_CONNECT_FLAGS;

typedef enum dat_close_flags

 {

 DAT_CLOSE_ABRUPT_FLAG = 0x00,

 DAT_CLOSE_GRACEFUL_FLAG = 0x01

 } DAT_CLOSE_FLAGS;

#define DAT_CLOSE_DEFAULT DAT_CLOSE_ABRUPT_FLAG

typedef enum dat_evd_flags

 {

 DAT_EVD_SOFTWARE_FLAG = 0x001,

 DAT_EVD_CR_FLAG = 0x010,

 DAT_EVD_DTO_FLAG = 0x020,

 DAT_EVD_CONNECTION_FLAG = 0x040,

 DAT_EVD_RMR_BIND_FLAG = 0x080,

 DAT_EVD_ASYNC_FLAG = 0x100,

/* DAT events only, no software events */

 DAT_EVD_DEFAULT_FLAG = 0x1F0

 } DAT_EVD_FLAGS;

typedef enum dat_psp_flags

 {

 DAT_PSP_CONSUMER_FLAG = 0x00, /* Consumer creates an End-
point */

 DAT_PSP_PROVIDER_FLAG = 0x01 /* Provider creates an End-
point */
 Page 359

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 } DAT_PSP_FLAGS;

/*

 * Memory Buffers

 *

 * Both LMR and RMR triplets specify 64-bit addresses in the
local host’s byte

 * order, even when that exceeds the size of a DAT_PVOID for
the host

 * architecture.

*

*/

/*

* Both LMR and RMR Triplets specify 64-bit addresses in the
local host

* order, even when that exceeds the size of a void pointer
for the host

* architecture. The DAT_VADDR type that represents addresses
is in the

* native byte-order of the local host. Helper macros that
allow Consumers

* to convert DAT_VADDR into various orders that might be
useful for

* inclusion of RMR Triplets into a payload of a message
follow.

*

* DAT defines the following macros to convert the fields on
an RMR Triplet

* to defined byte orders to allow their export by the Con-
sumer over wire

* protocols. DAT does not define how the two peers decide
which byte should be

* used.

*

* DAT_LMRC_TO_LSB(lmrc) returns the supplied LMR Context in
ls-byte

* order.

* DAT_LMRC_TO_MSB(lmrc) returns the supplied LMR Context in
ms-byte

* order.
 Page 360

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

* DAT_RMRC_TO_LSB(rmrc) returns the supplied RMR Context in
ls-byte

* order.

* DAT_RMRC_TO_MSB(rmrc) returns the supplied RMR Context in
ms-byte

* order.

* DAT_VADDR_TO_LSB(vaddr) returns the supplied Virtual Ad-
dress in ls-byte

* order.

* DAT_VADDR_TO_MSB(vaddr) returns the supplied Virtual Ad-
dress in

* ms-byte order.

* DAT_VLEN_TO_LSB(vlen) returns the supplied length in ls-
byte order.

* DAT_VLEN_TO_MSB(vlen) returns the supplied length in ms-
byte order.

*

* Consumers are free to use 64-bit or 32-bit arithmetic for
local or remote

* memory address and length manipulation in their preferred
byte-order. Only the

* LMR and RMR Triplets passed to a Provider as part of a
Posted DTO are

* required to be in 64-bit address and local host order for-
mats. Providers shall

* convert RMR_Triplets to a Transport-required wire format.

*

* For the best performance, Consumers should align each
buffer segment to

* the boundary specified by the dat_optimal_alignment.

*/

typedef DAT_UINT32 DAT_LMR_CONTEXT;

typedef DAT_UINT32 DAT_RMR_CONTEXT;

typedef DAT_UINT64 DAT_VLEN;

typedef DAT_UINT64 DAT_VADDR;

typedef DAT_UINT32 DAT_SEG_LENGTH /* The maximum data seg-
ment length */

typedef struct dat_provider_attr DAT_PROVIDER_ATTR;

typedef struct dat_evd_param DAT_EVD_PARAM;
 Page 361

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
typedef struct dat_lmr_param DAT_LMR_PARAM;

/* It is legal for the Consumer to specify zero for
segment_length

* of the dat_lmr_triplet. When 0 is specified for the

* segment_length then the other two elements of the

* dat_lmr_triplet are irrelevant and can be invalid.

*/

typedef struct dat_lmr_triplet

 {

 DAT_VADDR virtual_address;/* 64-bit address */

 DAT_SEG_LENGTH segment_length; /* 32-bit length */

 DAT_LMR_CONTEXT lmr_context; /* 32-bit lmr_context */

 } DAT_LMR_TRIPLET;

typedef struct dat_rmr_triplet

 {

 DAT_VADDR virtual_address;/* 64-bit address */

 DAT_SEG_LENGTH segment_length; /* 32-bit length */

 DAT_RMR_CONTEXT rmr_context; /* 32-bit rmr_context */

 } DAT_RMR_TRIPLET;

/* Memory privileges */

typedef enum dat_mem_priv_flags

 {

 DAT_MEM_PRIV_NONE_FLAG = 0x00,

 DAT_MEM_PRIV_LOCAL_READ_FLAG = 0x01,

 DAT_MEM_PRIV_REMOTE_READ_FLAG = 0x02,

 DAT_MEM_PRIV_LOCAL_WRITE_FLAG = 0x10,

 DAT_MEM_PRIV_REMOTE_WRITE_FLAG = 0x20,

 DAT_MEM_PRIV_ALL_FLAG = 0x33,

DAT_MEM_PRIV_EXTENSION_BASE = 0x40

/* To be used by DAT extensions as a starting

point of extension memory privileges */

} DAT_MEM_PRIV_FLAGS;
 Page 362

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

/* For backward compatibility with DAT-1.0, memory priv-
ileges values */

/* are supported */

#define DAT_MEM_PRIV_READ_FLAG (DAT_MEM_PRIV_LOCAL_READ_
FLAG | DAT_MEM_PRIV_REMOTE_READ_FLAG)

#define DAT_MEM_PRIV_WRITE_FLAG (DAT_MEM_PRIV_LOCAL_WRITE_
FLAG | DAT_MEM_PRIV_REMOTE_WRITE_FLAG)

/* LMR VA types */

typedef enum dat_va_type

 {

 DAT_VA_TYPE_VA = 0x0,

 DAT_VA_TYPE_ZB = 0x1

 } DAT_VA_TYPE;

/* LMR Arguments Mask */

typedef enum dat_lmr_param_mask

 {

 DAT_LMR_FIELD_IA_HANDLE = 0x001,

 DAT_LMR_FIELD_MEM_TYPE = 0x002,

 DAT_LMR_FIELD_REGION_DESC = 0x004,

 DAT_LMR_FIELD_LENGTH = 0x008,

 DAT_LMR_FIELD_PZ_HANDLE = 0x010,

 DAT_LMR_FIELD_MEM_PRIV = 0x020,

 DAT_LMR_FIELD_VA_TYPE = 0x040,

 DAT_LMR_FIELD_LMR_CONTEXT = 0x080,

 DAT_LMR_FIELD_RMR_CONTEXT = 0x100,

 DAT_LMR_FIELD_REGISTERED_SIZE =0x200,

 DAT_LMR_FIELD_REGISTERED_ADDRESS = 0x400,

 DAT_LMR_FIELD_ALL = 0x7FF

 } DAT_LMR_PARAM_MASK;

/* RMR Arguments & RMR Arguments Mask */

typedef struct dat_rmr_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_PZ_HANDLE pz_handle;
 Page 363

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_LMR_TRIPLET lmr_triplet;

 DAT_MEM_PRIV_FLAGS mem_priv;

 DAT_RMR_CONTEXT rmr_context;

 DAT_RMR_SCOPE rmr_scope;

 DAT_VA_TYPE va_type;

 } DAT_RMR_PARAM;

typedef enum dat_rmr_param_mask

 {

 DAT_RMR_FIELD_IA_HANDLE = 0x01,

 DAT_RMR_FIELD_PZ_HANDLE = 0x02,

 DAT_RMR_FIELD_LMR_TRIPLET = 0x04,

 DAT_RMR_FIELD_MEM_PRIV = 0x08,

 DAT_RMR_FIELD_RMR_CONTEXT = 0x10,

 DAT_RMR_FIELD_RMR_SCOPE = 0x20,

 DAT_RMR_FIELD_VA_TYPE = 0x40,

 DAT_RMR_FIELD_ALL = 0x7F

 } DAT_RMR_PARAM_MASK;

/* Provider attributes */

typedef enum dat_iov_ownership

 {

 /* Not a modification by the Provider; the Consumer
can use anytime. */

 DAT_IOV_CONSUMER = 0x0,

 /* Provider does not modify returned IOV DTO on com-
pletion. */

 DAT_IOV_PROVIDER_NOMOD = 0x1,

 /* Provider can modify IOV DTO on completion; can't
trust it. */

 DAT_IOV_PROVIDER_MOD = 0x2

 } DAT_IOV_OWNERSHIP;

typedef enum dat_ep_creator_for_psp

 {
 Page 364

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_PSP_CREATES_EP_NEVER, /* Provider never creates
Endpoint. */

 DAT_PSP_CREATES_EP_IFASKED, /* Provider creates End-
point if asked. */

 DAT_PSP_CREATES_EP_ALWAYS /* Provider always creates
Endpoint. */

 } DAT_EP_CREATOR_FOR_PSP;

/* DAPL 2.0 addition */

/* Defines RMR protection scope */

typedef enum dat_rmr_scope

{

DAT_RMR_SCOPE_EP, /* bound to at most one EP at a time.
*/

DAT_RMR_SCOPE_PZ, /* bound to a Protection Zone */

DAT_RMR_SCOPE_ANY /* Supports all types */

} DAT_RMR_SCOPE;

/* General Interface Adapter attributes. These apply to both
udat and kdat. */

/* To support backwards compatibility for DAPL-1.0 */

#define max_rdma_read_per_ep max_rdma_read_per_ep_in

#define DAT_IA_FIELD_IA_MAX_DTO_PER_OP DAT_IA_FIELD_IA_
MAX_DTO_PER_EP_IN

/* To support backwards compatibility for DAPL-1.0 & DAPL-
1.1 */

#define max_mtu_size max_message_size

/* DAPL 2.0 addition */

/* Defines extensions */

typedef enum dat_extension

{

DAT_EXTENSION_IB, /* IB extension. */

DAT_EXTENSION_IW, /* iWARP extension. */

DAT_EXTENSION_NONE /* no extension supported. */

} DAT_EXTENSION;

typedef struct dat_ia_attr

{

 Page 365

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 char adapter_name[DAT_NAME_MAX_LENGTH];

 char vendor_name[DAT_NAME_MAX_
LENGTH];

 DAT_UINT32 hardware_version_major;

 DAT_UINT32 hardware_version_minor;

 DAT_UINT32 firmware_version_major;

 DAT_UINT32 firmware_version_minor;

 DAT_IA_ADDRESS_PTR ia_address_ptr;

 DAT_COUNT max_eps;

 DAT_COUNT max_dto_per_ep;

 DAT_COUNT max_rdma_read_per_ep_in;

 DAT_COUNT max_rdma_read_per_ep_out;

 DAT_COUNT max_evds;

 DAT_COUNT max_evd_qlen;

 DAT_COUNT max_iov_segments_per_dto;

 DAT_COUNT max_lmrs;

 DAT_SEG_LENGTH max_lmr_block_size;

 DAT_VADDR max_lmr_virtual_address;

 DAT_COUNT max_pzs;

 DAT_SEG_LENGTH max_message_size;

 DAT_SEG_LENGTH max_rdma_size;

 DAT_COUNT max_rmrs;

 DAT_VADDR max_rmr_target_address;

 DAT_COUNT max_srqs;

 DAT_COUNT max_ep_per_srq;

 DAT_COUNT max_recv_per_srq;

 DAT_COUNT max_iov_segments_per_rdma_read;

 DAT_COUNT max_iov_segments_per_rdma_write;

 DAT_COUNT max_rdma_read_in;

 DAT_COUNT max_rdma_read_out;

 DAT_BOOLEAN max_rdma_read_per_ep_in_guaranteed;

 DAT_BOOLEAN max_rdma_read_per_ep_out_guaranteed;

 DAT_BOOLEAN zb_supported;

 DAT_EXTENSION extension_supported;

 DAT_COUNT extension_version;

 DAT_COUNT num_transport_attr;

 DAT_NAMED_ATTR *transport_attr;

 DAT_COUNT num_vendor_attr;
 Page 366

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_NAMED_ATTR *vendor_attr;

} DAT_IA_ATTR;

/* To support backwards compatibility for DAPL-1.0 & DAPL-
1.1 */

#define DAT_IA_FIELD_IA_MAX_MTU_SIZE DAT_IA_FIELD_IA_MAX_
MESSAGE_SIZE

typedef DAT_UINT64 DAT_IA_ATTR_MASK;

#define DAT_IA_FIELD_IA_ADAPTER_NAME UINT64_C(0x000000001)

#define DAT_IA_FIELD_IA_VENDOR_NAME UINT64_C(0x000000002)

#define DAT_IA_FIELD_IA_HARDWARE_MAJOR_VERSION UINT64_
C(0x000000004)

#define DAT_IA_FIELD_IA_HARDWARE_MINOR_VERSION UINT64_
C(0x000000008)

#define DAT_IA_FIELD_IA_FIRMWARE_MAJOR_VERSION UINT64_
C(0x000000010)

#define DAT_IA_FIELD_IA_FIRMWARE_MINOR_VERSION UINT64_
C(0x000000020)

#define DAT_IA_FIELD_IA_ADDRESS_PTR UINT64_C(0x000000040)

#define DAT_IA_FIELD_IA_MAX_EPS UINT64_C(0x000000080)

#define DAT_IA_FIELD_IA_MAX_DTO_PER_EP UINT64_
C(0x000000100)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_PER_EP_IN UINT64_
C(0x000000200)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_PER_EP_OUT UINT64_
C(0x000000400)

#define DAT_IA_FIELD_IA_MAX_EVDS UINT64_C(0x000000800)

#define DAT_IA_FIELD_IA_MAX_EVD_QLEN UINT64_C(0x000001000)

#define DAT_IA_FIELD_IA_MAX_IOV_SEGMENTS_PER_DTO UINT64_
C(0x000002000)

#define DAT_IA_FIELD_IA_MAX_LMRS UINT64_C(0x000004000)

#define DAT_IA_FIELD_IA_MAX_LMR_BLOCK_SIZE UINT64_
C(0x000008000)

#define DAT_IA_FIELD_IA_MAX_LMR_VIRTUAL_ADDRESS UINT64_
C(0x000010000)

#define DAT_IA_FIELD_IA_MAX_PZS UINT64_C(0x000020000)

#define DAT_IA_FIELD_IA_MAX_MESSAGE_SIZE UINT64_
C(0x000040000)

#define DAT_IA_FIELD_IA_MAX_RDMA_SIZE UINT64_C(0x000080000)

#define DAT_IA_FIELD_IA_MAX_RMRS UINT64_C(0x000100000)
 Page 367

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
#define DAT_IA_FIELD_IA_MAX_RMR_TARGET_ADDRESS UINT64_
C(0x000200000)

#define DAT_IA_FIELD_IA_MAX_SRQS UINT64_C(0x000400000)

#define DAT_IA_FIELD_IA_MAX_EP_PER_SRQ UINT64_
C(0x000800000)

#define DAT_IA_FIELD_IA_MAX_RECV_PER_SRQ UINT64_
C(0x001000000)

#define DAT_IA_FIELD_IA_MAX_IOV_SEGMENTS_PER_RDMA_READ
UINT64_C(0x002000000)

#define DAT_IA_FIELD_IA_MAX_IOV_SEGMENTS_PER_RDMA_WRITE
UINT64_C(0x004000000)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_IN UINT64_
C(0x008000000)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_OUT UINT64_
C(0x010000000)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_PER_EP_IN_GUARANTEED
UINT64_C(0x020000000)

#define DAT_IA_FIELD_IA_MAX_RDMA_READ_PER_EP_OUT_GUARANTEED
UINT64_C(0x040000000)

#define DAT_IA_FIELD_IA_ZB_SUPPORTED UINT64_C(0x080000000)

#define DAT_IA_FIELD_IA_EXTENSION UINT64_C(0x100000000)

#define DAT_IA_FIELD_IA_EXTENSION_VERSION UINT64_
C(0x200000000)

#define DAT_IA_FIELD_IA_NUM_TRANSPORT_ATTR UINT64_
C(0x400000000)

#define DAT_IA_FIELD_IA_TRANSPORT_ATTR UINT64_
C(0x800000000)

#define DAT_IA_FIELD_IA_NUM_VENDOR_ATTR UINT64_
C(0x1000000000)

#define DAT_IA_FIELD_IA_VENDOR_ATTR UINT64_C(0x2000000000)

/* To support backwards compatibility for DAPL-1.0 & DAPL-
1.1 */

#define DAT_IA_ALL DAT_IA_FIELD_ALL

#define DAT_IA_FIELD_ALL UINT64_C(0x3FFFFFFFFF)

#define DAT_IA_FIELD_NONE UINT64_C(0x0)

/* Endpoint attributes */

typedef enum dat_service_type
 Page 368

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 {

 DAT_SERVICE_TYPE_RC /* reliable connections */

 } DAT_SERVICE_TYPE;

typedef struct dat_ep_attr {

 DAT_SERVICE_TYPE service_type;

 DAT_SEG_LENGTH max_message_size;

 DAT_SEG_LENGTH max_rdma_size;

 DAT_QOS qos;

 DAT_COMPLETION_FLAGS recv_completion_flags;

 DAT_COMPLETION_FLAGS request_completion_flags;

 DAT_COUNT max_recv_dtos;

 DAT_COUNT max_request_dtos;

 DAT_COUNT max_recv_iov;

 DAT_COUNT max_request_iov;

 DAT_COUNT max_rdma_read_in;

 DAT_COUNT max_rdma_read_out;

 DAT_COUNT srq_soft_hw;

 DAT_COUNT max_rdma_read_iov;

 DAT_COUNT max_rdma_write_iov;

 DAT_COUNT ep_transport_specific_
count;

 DAT_NAMED_ATTR * ep_transport_specific;

 DAT_COUNT ep_provider_specific_
count;

 DAT_NAMED_ATTR * ep_provider_specific;

 } DAT_EP_ATTR;

/* Endpoint Parameters */

/* For backwards compatability */

#define DAT_EP_STATE_ERROR DAT_EP_STATE_DISCONNECTED

typedef enum dat_ep_state

{

 DAT_EP_STATE_UNCONNECTED, /* quiescent state */

 DAT_EP_STATE_UNCONFIGURED_UNCONNECTED,

 DAT_EP_STATE_RESERVED,
 Page 369

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_EP_STATE_UNCONFIGURED_RESERVED,

 DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,

 DAT_EP_STATE_UNCONFIGURED_PASSIVE,

 DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,

 DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,

 DAT_EP_STATE_UNCONFIGURED_TENTATIVE,

 DAT_EP_STATE_CONNECTED,

 DAT_EP_STATE_DISCONNECT_PENDING,

 DAT_EP_STATE_DISCONNECTED,

 DAT_EP_STATE_COMPLETION_PENDING,

 DAT_EP_STATE_CONNECTED_SINGLE_PATH,

 DAT_EP_STATE_CONNECTED_MULTI_PATH

} DAT_EP_STATE;

typedef struct dat_ep_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_EP_STATE ep_state;

 DAT_COMM comm;

 DAT_IA_ADDRESS_PTR local_ia_address_ptr;

 DAT_PORT_QUAL local_port_qual;

 DAT_IA_ADDRESS_PTR remote_ia_address_ptr;

 DAT_PORT_QUAL remote_port_qual;

 DAT_PZ_HANDLE pz_handle;

 DAT_EVD_HANDLE recv_evd_handle;

 DAT_EVD_HANDLE request_evd_handle;

 DAT_EVD_HANDLE connect_evd_handle;

 DAT_SRQ_HANDLE srq_handle;

 DAT_EP_ATTR ep_attr;

 } DAT_EP_PARAM;

typedef DAT_UINT64 DAT_EP_PARAM_MASK;

#define DAT_EP_FIELD_IA_HANDLE UINT64_C(0x00000001)

#define DAT_EP_FIELD_EP_STATE UINT64_C(0x00000002)

#define DAT_EP_FIELD_COMM UINT64_C(0x000000048)

#define DAT_EP_FIELD_LOCAL_IA_ADDRESS_PTR UINT64_
C(0x00000008)

#define DAT_EP_FIELD_LOCAL_PORT_QUAL UINT64_C(0x00000010)
 Page 370

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#define DAT_EP_FIELD_REMOTE_IA_ADDRESS_PTR UINT64_
C(0x00000020)

#define DAT_EP_FIELD_REMOTE_PORT_QUAL UINT64_C(0x00000040)

#define DAT_EP_FIELD_PZ_HANDLE UINT64_C(0x00000080)

#define DAT_EP_FIELD_RECV_EVD_HANDLE UINT64_C(0x00000100)

#define DAT_EP_FIELD_REQUEST_EVD_HANDLE UINT64_
C(0x00000200)

#define DAT_EP_FIELD_CONNECT_EVD_HANDLE UINT64_
C(0x00000400)

#define DAT_EP_FIELD_SRQ_HANDLE UINT64_C(0x00000800)

 /* Remainder of values from EP_ATTR, 0x00001000 and up */

#define DAT_EP_FIELD_EP_ATTR_SERVICE_TYPE UINT64_
C(0x00001000)

#define DAT_EP_FIELD_EP_ATTR_MAX_MESSAGE_SIZE UINT64_
C(0x00002000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RDMA_SIZE UINT64_
C(0x00004000)

#define DAT_EP_FIELD_EP_ATTR_QOS UINT64_C(0x00008000)

#define DAT_EP_FIELD_EP_ATTR_RECV_COMPLETION_FLAGS UINT64_
C(0x00010000)

#define DAT_EP_FIELD_EP_ATTR_REQUEST_COMPLETION_FLAGS
UINT64_C(0x00020000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RECV_DTOS UINT64_
C(0x00040000)

#define DAT_EP_FIELD_EP_ATTR_MAX_REQUEST_DTOS UINT64_
C(0x00080000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RECV_IOV UINT64_
C(0x00100000)

#define DAT_EP_FIELD_EP_ATTR_MAX_REQUEST_IOV UINT64_
C(0x00200000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RDMA_READ_IN UINT64_
C(0x00400000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RDMA_READ_OUT UINT64_
C(0x00800000)

#define DAT_EP_FIELD_EP_ATTR_SRQ_SOFT_HWUINT64_
C(0x01000000)
 Page 371

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
#define DAT_EP_FIELD_EP_ATTR_MAX_RDMA_READ_IOV UINT64_
C(0x02000000)

#define DAT_EP_FIELD_EP_ATTR_MAX_RDMA_WRITE_IOV UINT64_
C(0x04000000)

#define DAT_EP_FIELD_EP_ATTR_NUM_TRANSPORT_ATTR UINT64_
C(0x08000000)

#define DAT_EP_FIELD_EP_ATTR_TRANSPORT_SPECIFIC_ATTR
UINT64_C(0x10000000)

#define DAT_EP_FIELD_EP_ATTR_NUM_PROVIDER_ATTR UINT64_
C(0x20000000)

#define DAT_EP_FIELD_EP_ATTR_PROVIDER_SPECIFIC_ATTR
UINT64_C(0x40000000)

#define DAT_EP_FIELD_EP_ATTR_ALL UINT64_C(0x7FFFF000)

#define DAT_EP_FIELD_ALL UINT64_C(0x7FFFFFFF)

#define DAT_WATERMARK_INFINITE ((DAT_COUNT) ~0)

#define DAT_HW_DEFAULT DAT_WATERMARK_INFINITE

#define DAT_SRQ_LW_DEFAULT 0x0

typedef enum dat_srq_state

 {

 DAT_SRQ_STATE_OPERATIONAL,

 DAT_SRQ_STATE_ERROR

} DAT_SRQ_STATE;

#define DAT_VALUE_UNKNOWN (((DAT_COUNT) ~0)-1)

typedef struct dat_srq_attr {

 DAT_COUNT max_recv_dtos;

 DAT_COUNT max_recv_iov;

 DAT_COUNT low_watermark;

} DAT_SRQ_ATTR;

typedef struct dat_srq_param

 {
 Page 372

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_IA_HANDLE ia_handle;

 DAT_SRQ_STATE srq_state;

 DAT_PZ_HANDLE pz_handle;

 DAT_COUNT max_recv_dtos;

 DAT_COUNT max_recv_iov;

 DAT_COUNT low_watermark;

 DAT_COUNT available_dto_count;

 DAT_COUNT outstanding_dto_count;

 } DAT_SRQ_PARAM;

typedef enum dat_srq_param_mask

 {

 DAT_SRQ_FIELD_IA_HANDLE = 0x001,

 DAT_SRQ_FIELD_SRQ_STATE = 0x002,

 DAT_SRQ_FIELD_PZ_HANDLE = 0x004,

 DAT_SRQ_FIELD_MAX_RECV_DTO = 0x008,

 DAT_SRQ_FIELD_MAX_RECV_IOV = 0x010,

 DAT_SRQ_FIELD_LOW_WATERMARK = 0x020,

 DAT_SRQ_FIELD_AVAILABLE_DTO_COUNT = 0x040,

 DAT_SRQ_FIELD_OUTSTANDING_DTO_COUNT = 0x080,

 DAT_SRQ_FIELD_ALL = 0x0FF

 } DAT_SRQ_PARAM_MASK;

/* PZ Parameters */

typedef struct dat_pz_param

 {

 DAT_IA_HANDLE ia_handle;

 } DAT_PZ_PARAM;

typedef enum dat_pz_param_mask

 {

 DAT_PZ_FIELD_IA_HANDLE = 0x01,

 DAT_PZ_FIELD_ALL = 0x01

 } DAT_PZ_PARAM_MASK;

/* PSP Parameters */
 Page 373

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
typedef struct dat_psp_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_CONN_QUAL conn_qual;

 DAT_EVD_HANDLE evd_handle;

 DAT_PSP_FLAGS psp_flags;

 } DAT_PSP_PARAM;

typedef enum dat_psp_param_mask

 {

 DAT_PSP_FIELD_IA_HANDLE = 0x01,

 DAT_PSP_FIELD_CONN_QUAL = 0x02,

 DAT_PSP_FIELD_EVD_HANDLE = 0x04,

 DAT_PSP_FIELD_PSP_FLAGS = 0x08,

 DAT_PSP_FIELD_ALL = 0x0F

 } DAT_PSP_PARAM_MASK;

/* RSP Parameters */

typedef struct dat_rsp_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_CONN_QUAL conn_qual;

 DAT_EVD_HANDLE evd_handle;

 DAT_EP_HANDLE ep_handle;

 } DAT_RSP_PARAM;

typedef enum dat_rsp_param_mask

 {

 DAT_RSP_FIELD_IA_HANDLE = 0x01,

 DAT_RSP_FIELD_CONN_QUAL = 0x02,

 DAT_RSP_FIELD_EVD_HANDLE = 0x04,

 DAT_RSP_FIELD_EP_HANDLE = 0x08,

 DAT_RSP_FIELD_ALL = 0x0F

 } DAT_RSP_PARAM_MASK;
 Page 374

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

/* CSP Parameters */

typedef struct dat_csp_param

 {

 DAT_IA_HANDLE ia_handle;

 DAT_COMM *comm;

 DAT_IA_ADDRESS address_ptr;

 DAT_EVD_HANDLE evd_handle;

 } DAT_CSP_PARAM;

typedef enum dat_csp_param_mask

 {

 DAT_CSP_FIELD_IA_HANDLE = 0x01,

 DAT_CSP_FIELD_COMM = 0x02,

 DAT_CSP_FIELD_IA_ADDRESS = 0x04,

 DAT_CSP_FIELD_EVD_HANDLE = 0x08,

 DAT_CSP_FIELD_ALL = 0x0F

 } DAT_CSP_PARAM_MASK;

/* Connection Request Parameters.

 *

 * The Connection Request does not provide Remote Endpoint
attributes.

 * If a local Consumer needs this information, the remote
Consumer should

 * encode it into Private Data.

 */

typedef struct dat_cr_param

 {

 /* Remote IA whose Endpoint requested the connection.
*/

 DAT_IA_ADDRESS_PTR remote_ia_address_ptr;

 /* Port qualifier of the remote Endpoint of the
requested connection. */

 DAT_PORT_QUAL remote_port_qual;

 /* Size of the Private Data.
*/
 Page 375

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_COUNT private_data_size;

 /* Pointer to the Private Data passed by remote side
in the Connection

 * Request.
*/

 DAT_PVOID private_data;

 /* The local Endpoint provided by the Service Point
for the requested

 * connection. It is the only Endpoint that can accept
a Connection

 * Request on this Service Point. The value DAT_
HANDLE_NULL

 * represents that there is no associated local Endpoint
for the requested

 * connec-
tion. */

 DAT_EP_HANDLE local_ep_handle;

 } DAT_CR_PARAM;

typedef enum dat_cr_param_mask

 {

 DAT_CR_FIELD_REMOTE_IA_ADDRESS_PTR = 0x01,

 DAT_CR_FIELD_REMOTE_PORT_QUAL = 0x02,

 DAT_CR_FIELD_PRIVATE_DATA_SIZE = 0x04,

 DAT_CR_FIELD_PRIVATE_DATA = 0x08,

 DAT_CR_FIELD_LOCAL_EP_HANDLE = 0x10,

 DAT_CR_FIELD_ALL = 0x1F

 } DAT_CR_PARAM_MASK;

/**************************
Events******************************/

/* Completion status flags */

 /* DTO completion status */

/* For backwards compatibility */
 Page 376

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#define DAT_DTO_LENGTH_ERROR DAT_DTO_ERR_LOCAL_LENGTH

#define DAT_DTO_FAILURE DAT_DTO_ERR_FLUSHED

typedef enum dat_dto_completion_status

 {

 DAT_DTO_SUCCESS = 0,

DAT_DTO_ERR_FLUSHED = 1,

DAT_DTO_ERR_LOCAL_LENGTH = 2,

DAT_DTO_ERR_LOCAL_EP = 3,

DAT_DTO_ERR_LOCAL_PROTECTION = 4,

DAT_DTO_ERR_BAD_RESPONSE = 5,

DAT_DTO_ERR_REMOTE_ACCESS = 6,

DAT_DTO_ERR_REMOTE_RESPONDER = 7,

DAT_DTO_ERR_TRANSPORT = 8,

DAT_DTO_ERR_RECEIVER_NOT_READY = 9,

DAT_DTO_ERR_PARTIAL_PACKET = 10,

DAT_RMR_OPERATION_FAILED = 11

} DAT_DTO_COMPLETION_STATUS;

 /* RMR completion status */

/* For backwards compatibility */

#define DAT_RMR_BIND_SUCCESS DAT_DTO_SUCCESS

#define DAT_RMR_BIND_FAILURE DAT_DTO_ERR_FLUSHED

/* RMR completion status */

#define DAT_RMR_BIND_COMPLETION_STATUS DAT_DTO_COMPLETION_
STATUS

/* Completion group structs (six total) */

 /* DTO completion event data */

/* transfered_length is not defined if status is not DAT_
SUCCESS */

/*invalidate_flag and rmr_context are not defined if status
is not DAT_SUCCESS */

typedef struct dat_dto_completion_event_data

 {
 Page 377

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_EP_HANDLE ep_handle;

 DAT_DTO_COOKIE user_cookie;

 DAT_DTO_COMPLETION_STATUS status;

 DAT_SEG_LENGTH transfered_length;

 DAT_DTOS operation;

DAT_RMR_CONTEXT rmr_context;

 } DAT_DTO_COMPLETION_EVENT_DATA;

 /* RMR bind completion event data */

typedef struct dat_rmr_bind_completion_event_data

 {

 DAT_RMR_HANDLE rmr_handle;

 DAT_RMR_COOKIE user_cookie;

 DAT_RMR_BIND_COMPLETION_STATUS status;

 } DAT_RMR_BIND_COMPLETION_EVENT_DATA;

typedef union dat_sp_handle

{

 DAT_RSP_HANDLE rsp_handle;

 DAT_PSP_HANDLE psp_handle;

DAT_CSP_HANDLE csp_handle;

} DAT_SP_HANDLE;

 /* Connection Request Arrival event data */

typedef struct dat_cr_arrival_event_data

 {

/* Handle to the Service Point that received the Connec-
tion Request from

 * the remote side. If the Service Point was Reserved, sp_
handle is

 * DAT_HANDLE_NULL because the reserved Service Point is

 * automatically destroyed upon generating this event. Can
be PSP, CSP, or RSP. */

 DAT_SP_HANDLE sp_handle;

 /* Address of the IA on which the Connection Request
arrived. */

 DAT_IA_ADDRESS_PTR local_ia_address_ptr;
 Page 378

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 /* Connection Qualifier of the IA on which the Service
Point received a

 * Connection Re-
quest. */

 DAT_CONN_QUAL conn_qual;

 /* The Connection Request instance created by a Pro-
vider for the arrived

 * Connection Request. Consumers can find out private_
data passed by a remote

 * Consumer from cr_handle. It is up to a Consumer
to dat_cr_accept or

 * dat_cr_reject of the Connection Re-
quest. */

 DAT_CR_HANDLE cr_handle;

/* The binary indicator whether the arrived privata data
was trancated or not.

 * The default value of 0 means not truncation of received
private data. */

 DAT_BOOLEAN truncate_flag;

 } DAT_CR_ARRIVAL_EVENT_DATA;

/* Connection event data */

typedef struct dat_connection_event_data

 {

 DAT_EP_HANDLE ep_handle;

 DAT_COUNT private_data_size;

 DAT_PVOID private_data;

} DAT_CONNECTION_EVENT_DATA;

/* Async Error event data */

/* For unaffiliated asynchronous event dat_handle is ia_
handle. For Endpoint affiliated asynchronous event dat_
handle is ep_handle. For EVD affiliated asynchronous event
dat_handle is evd_handle. For SRQ affiliated asynchronous
event dat_handle is srq_handle. For Memory affiliated asyn-
chronous event

dat_handle is either lmr_handle, rmr_handle or pz_handle. */

typedef struct dat_asynch_error_event_data

 {
 Page 379

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_HANDLE dat_handle; /* either IA, EP, EVD, SRQ, LMR,
RMR,SP, or PZ handle */

 DAT_COUNT reason; /* object specific */

} DAT_ASYNCH_ERROR_EVENT_DATA;

/* The reason is object type specific and its values are de-
fined below. */

typedef enum ia_async_error_reason

 {

DAT_IA_CATASTROPHIC_ERROR,

DAT_IA_OTHER_ERROR

} DAT_IA_ASYNC_ERROR_REASON;

typedef enum ep_async_error_reason

 {

DAT_EP_TRANSFER_TO_ERROR,

DAT_EP_OTHER_ERROR,

DAT_SRQ_SOFT_HIGH_WATERMARK_EVENT

} DAT_EP_ASYNC_ERROR_REASON;

typedef enum evd_async_error_reason

 {

DAT_EVD_OVERFLOW_ERROR,

DAT_EVD_OTHER_ERROR

} DAT_EVD_ASYNC_ERROR_REASON;

typedef enum srq_async_error_reason

 {

DAT_SRQ_TRANSFER_TO_ERROR,

DAT_SRQ_OTHER_ERROR,

DAT_SRQ_LOW_WATERMARK_EVENT

} DAT_SRQ_ASYNC_ERROR_REASON;

typedef enum lmr_async_error_reason

 {

DAT_LMR_OTHER_ERROR

} DAT_LMR_ASYNC_ERROR_REASON;

typedef enum rmr_async_error_reason

 {

DAT_RMR_OTHER_ERROR

} DAT_RMR_ASYNC_ERROR_REASON;

typedef enum pz_async_error_reason

 {
 Page 380

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

DAT_PZ_OTHER_ERROR

} DAT_PZ_ASYNC_ERROR_REASON;

/* Software event data */

typedef struct dat_software_event_data

 {

 DAT_PVOID pointer;

 } DAT_SOFTWARE_EVENT_DATA;

typedef enum dat_event_number

 {

 DAT_DTO_COMPLETION_EVENT = 0x00001,

 DAT_RMR_BIND_COMPLETION_EVENT =
0x01001,

 DAT_CONNECTION_REQUEST_EVENT = 0x02001,

 DAT_CONNECTION_EVENT_ESTABLISHED =
0x04001,

 DAT_CONNECTION_EVENT_PEER_REJECTED =
0x04002,

 DAT_CONNECTION_EVENT_NON_PEER_REJECTED =
0x04003,

 DAT_CONNECTION_EVENT_ACCEPT_COMPLETION_ERROR =
0x04004,

 DAT_CONNECTION_EVENT_DISCONNECTED =
0x04005,

 DAT_CONNECTION_EVENT_BROKEN = 0x04006,

 DAT_CONNECTION_EVENT_TIMED_OUT =
0x04007,

 DAT_CONNECTION_EVENT_UNREACHABLE = 0x04008,

 DAT_ASYNC_ERROR_EVD_OVERFLOW = 0x08001,

 DAT_ASYNC_ERROR_IA_CATASTROPHIC =
0x08002,

 DAT_ASYNC_ERROR_EP_BROKEN = 0x08003,

 DAT_ASYNC_ERROR_TIMED_OUT = 0x08004,

 DAT_ASYNC_ERROR_PROVIDER_INTERNAL_ERROR =
0x08005,
 Page 381

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_HA_DOWN_TO_1 = 0x08101,

 DAT_HA_UP_TO_MULTI_PATH = 0x08102,

DAT_SOFTWARE_EVENT = 0x10001,

DAT_EXTENSION_EVENT = 0x20000,

DAT_IB_EXTENSION_RANGE_BASE = 0x40000,

DAT_IW_EXTENSION_RANGE_BASE = 0x80000,

 } DAT_EVENT_NUMBER;

/* Union for event Data */

typedef union dat_event_data

 {

 DAT_DTO_COMPLETION_EVENT_DATA dto_completion_
event_data;

 DAT_RMR_BIND_COMPLETION_EVENT_DATA rmr_
completion_event_data;

 DAT_CR_ARRIVAL_EVENT_DATA cr_arrival_event_data;

 DAT_CONNECTION_EVENT_DATA connect_event_data;

 DAT_ASYNCH_ERROR_EVENT_DATA asynch_error_event_data;

 DAT_SOFTWARE_EVENT_DATA software_event_data;

} DAT_EVENT_DATA;

/* Event struct that holds all event information */

typedef struct dat_event

 {

 DAT_EVENT_NUMBER event_number;

 DAT_EVD_HANDLE evd_handle;

 DAT_EVENT_DATA event_data;

 DAT_UINT64 event_extension_data[8];

 } DAT_EVENT;

/* Provider/registration info */

typedef struct dat_provider_info {
 Page 382

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

char ia_name[DAT_NAME_MAX_LENGTH];

DAT_UINT32 dapl_version_major;

DAT_UINT32 dapl_version_minor;

DAT_BOOLEAN is_thread_safe;

} DAT_PROVIDER_INFO;

/***

 * FUNCTION PROTOTYPES

**
*****/

/*

 * IA functions

 *

 * Note that there are actual 'dat_ia_open' and 'dat_ia_
close'

 * functions, it is not just a re-directing #define. That is

 * because the functions may have to ensure that the provider

 * library is loaded before it can call it, and may choose to

 * unload the library after the last close.

 */

extern DAT_RETURN dat_ia_openv (

IN const DAT_NAME_PTR,/* provider */

IN DAT_COUNT,/* asynch_evd_min_qlen */

INOUT DAT_EVD_HANDLE *,/* asynch_evd_handle */

OUT DAT_IA_HANDLE *,/* ia_handle */

IN DAT_UINT32,/* dat major version number */

IN DAT_UINT32,/* dat minor version number */

IN DAT_BOOLEAN);/* dat thread safety */

#define dat_ia_open(name, qlen, async_evd, ia) \

dat_ia_openv((name), (qlen), (async_evd), (ia), \

DAT_VERSION_MAJOR, DAT_VERSION_MINOR, \

DAT_THREADSAFE)

extern DAT_RETURN dat_ia_query (

IN DAT_IA_HANDLE,/* ia_handle */

OUT DAT_EVD_HANDLE *,/* async_evd_handle */

IN DAT_IA_ATTR_MASK,/* ia_attr_mask */
 Page 383

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
OUT DAT_IA_ATTR *,/* ia_attr */

IN DAT_PROVIDER_ATTR_MASK,/* provider_attr_mask */

OUT DAT_PROVIDER_ATTR *);/* provider_attr */

extern DAT_RETURN dat_ia_close (

 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_CLOSE_FLAGS);/* close_flags */

/* helper functions */

extern DAT_RETURN dat_set_consumer_context (

 IN DAT_HANDLE, /* dat_handle
*/

 IN DAT_CONTEXT);/* context */

extern DAT_RETURN dat_get_consumer_context (

 IN DAT_HANDLE, /* dat_handle
*/

 OUT DAT_CONTEXT *);/* context */

extern DAT_RETURN dat_get_handle_type (

 IN DAT_HANDLE, /* dat_handle*/

 OUT DAT_HANDLE_TYPE *);/* handle_type*/

/* CR functions */

extern DAT_RETURN dat_cr_query (

 IN DAT_CR_HANDLE, /* cr_handle
*/

 IN DAT_CR_PARAM_MASK,/* cr_param_mask */

 OUT DAT_CR_PARAM *); /* cr_param */

extern DAT_RETURN dat_cr_accept (

 IN DAT_CR_HANDLE, /* cr_handle
*/

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* private_data_
size */

 IN const DAT_PVOID);/* private_data */
 Page 384

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

extern DAT_RETURN dat_cr_reject (

 IN DAT_CR_HANDLE , /* cr_handle
*/

 IN DAT_COUNT, /* private_data_
size */

 IN const DAT_PVOID);/* private_data */

/* For DAT-1.1 and above, this function is defined for
both uDAPL and

 * kDAPL. For DAT-1.0, it is only defined for uDAPL.

 */

extern DAT_RETURN dat_cr_handoff(

 IN DAT_CR_HANDLE, /* cr_handle */

 IN DAT_CONN_QUAL); /* handoff */

/* EVD functions */

extern DAT_RETURN dat_evd_resize (

 IN DAT_EVD_HANDLE,/* evd_handle */

 IN DAT_COUNT); /* evd_min_qlen
*/

extern DAT_RETURN dat_evd_post_se (

 INDAT_EVD_HANDLE, /* evd_handle
*/

 INconst DAT_EVENT *); /* event
*/

extern DAT_RETURN dat_evd_dequeue (

 IN DAT_EVD_HANDLE, /* evd_handle
*/

 OUT DAT_EVENT *); /* event
*/

extern DAT_RETURN dat_evd_query (

IN DAT_EVD_HANDLE,/* evd_handle */

IN DAT_EVD_PARAM_MASK,/* evd_param_mask */

OUT DAT_EVD_PARAM *);/* evd_param */

extern DAT_RETURN dat_evd_free (
 Page 385

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 IN DAT_EVD_HANDLE);/* evd_handle */

/* EP functions */

extern DAT_RETURN dat_ep_create (

 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 IN DAT_EVD_HANDLE, /* recv_completion_
evd_handle */

 IN DAT_EVD_HANDLE, /* request_
completion_evd_handle */

 IN DAT_EVD_HANDLE, /* connect_evd_
handle */

 IN const DAT_EP_ATTR *, /* ep_at-
tributes */

 OUT DAT_EP_HANDLE *);/* ep_handle */

extern DAT_RETURN dat_ep_query (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_EP_PARAM_MASK,/* ep_param_mask */

 OUT DAT_EP_PARAM *); /* ep_param */

extern DAT_RETURN dat_ep_modify (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_EP_PARAM_MASK, /* ep_param_mask
*/

 IN const DAT_EP_PARAM *);/* ep_param
*/

extern DAT_RETURN dat_ep_connect (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_IA_ADDRESS_PTR/* remote_ia_address */

 IN DAT_CONN_QUAL, /* remote_conn_qual
*/

 IN DAT_TIMEOUT, /* tim-
eout */
 Page 386

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 IN DAT_COUNT, /* private_data_
size */

 IN const DAT_PVOID, /* private_data
*/

 IN DAT_QOS, /* quality_of_ser-
vice */

 IN DAT_CONNECT_FLAGS); /* connect_flags
*/

extern DAT_RETURN dat_ep_dup_connect (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_EP_HANDLE, /* ep_dup_handle
*/

 IN DAT_TIMEOUT, /* tim-
eout */

 IN DAT_COUNT, /* private_data_
size */

 IN const DAT_PVOID,/* private_data */

 IN DAT_QOS); /* quality_of_ser-
vice */

extern DAT_RETURN dat_ep_common_connect (

 IN DAT_EP_HANDLE, /* ep_handle */

 IN DAT_IA_ADDRESS_PTR /* remote_ia_address */

 IN DAT_TIMEOUT, /* timeout */

 IN DAT_COUNT, /* private_data_size */

 IN const DAT_PVOID); /* private_data */

extern DAT_RETURN dat_ep_disconnect (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_CLOSE_FLAGS); /* close_flags */

extern DAT_RETURN dat_ep_post_send (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* num_seg-
ments */

 IN DAT_LMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN DAT_COMPLETION_FLAGS);/* completion_flags
*/
 Page 387

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
extern DAT_RETURN dat_ep_post_send_with_invalidate (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* num_seg-
ments */

 IN DAT_LMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN DAT_COMPLETION_FLAGS, /* completion_flags */

IN DAT_BINARY, /* invalidate flag */

IN DAT_RMR_CONTEXT /* RMR to invalidate */

);

extern DAT_RETURN dat_ep_post_recv (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* num_seg-
ments */

 IN DAT_LMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN DAT_COMPLETION_FLAGS);/* completion_flags
*/

extern DAT_RETURN dat_ep_post_rdma_read (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* num_seg-
ments */

 IN DAT_LMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN const DAT_RMR_TRIPLET *, /* remote_
iov */

 IN DAT_COMPLETION_FLAGS);/* completion_flags
*/

extern DAT_RETURN dat_ep_post_rdma_read_to_rmr (

 IN DAT_EP_HANDLE, /* ep_handle
*/
 Page 388

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 IN const DAT_RMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN const DAT_RMR_TRIPLET *, /* remote_iov
*/

 IN DAT_COMPLETION_FLAGS);/* completion_flags
*/

extern DAT_RETURN dat_ep_post_rdma_write (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_COUNT, /* num_seg-
ments */

 IN DAT_LMR_TRIPLET *, /* local_iov
*/

 IN DAT_DTO_COOKIE, /* user_cookie
*/

 IN const DAT_RMR_TRIPLET *, /* remote_
iov */

 IN DAT_COMPLETION_FLAGS);/* completion_flags
*/

extern DAT_RETURN dat_ep_get_status (

 IN DAT_EP_HANDLE, /* ep_handle
*/

 OUT DAT_EP_STATE *, /* ep_state
*/

 OUT DAT_BOOLEAN *, /* recv_idle
*/

 OUT DAT_BOOLEAN *);/* request_idle */

extern DAT_RETURN dat_ep_free (

 IN DAT_EP_HANDLE); /* ep_handle */

extern DAT_RETURN dat_ep_reset (

 IN DAT_EP_HANDLE); /* ep_handle */

extern DAT_RETURN dat_ep_create_with_srq(

 IN DAT_IA_HANDLE, /* ia_handle */

 IN DAT_PZ_HANDLE, /* pz_handle */

 IN DAT_EVD_HANDLE, /* recv_evd_handle */
 Page 389

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 IN DAT_EVD_HANDLE, /* request_evd_handle
*/

 IN DAT_EVD_HANDLE, /* connect_evd_handle
*/

 IN DAT_SRQ_HANDLE, /* srq_handle */

 IN DAT_EP_ATTR *, /* ep_attributes */

 OUT DAT_EP_HANDLE *); /* ep_handle */

extern DAT_RETURN dat_ep_recv_query(

 IN DAT_EP_HANDLE, /* ep_handle */

 OUT DAT_COUNT *, /* nbufs_allocated */

 OUT DAT_COUNT *); /* bufs_alloc_span */

extern DAT_RETURN dat_ep_set_watermark(

 IN DAT_EP_HANDLE, /* ep_handle */

 IN DAT_COUNT, /* soft_high_watermark */

 IN DAT_COUNT); /* hard_high_watermark */

/* LMR functions */

extern DAT_RETURN dat_lmr_query (

IN DAT_LMR_HANDLE,/* lmr_handle */

IN DAT_LMR_PARAM_MASK,/* lmr_param_mask */

OUT DAT_LMR_PARAM *);/* lmr_param */

extern DAT_RETURN dat_lmr_free (

 IN DAT_LMR_HANDLE);/* lmr_handle */

/* Non-coherent memory functions */

extern DAT_RETURN dat_lmr_sync_rdma_read(

IN DAT_IA_HANDLE, /* ia_handle */

IN const DAT_LMR_TRIPLET *, /* local_segments
*/

IN DAT_VLEN); /* num_segments */

extern DAT_RETURN dat_lmr_sync_rdma_write(

IN DAT_IA_HANDLE, /* ia_handle */

IN const DAT_LMR_TRIPLET *, /* local_segments
*/
 Page 390

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

IN DAT_VLEN); /* num_segments */

/* RMR functions */

extern DAT_RETURN dat_rmr_create (

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 OUT DAT_RMR_HANDLE *);/* rmr_handle */

extern DAT_RETURN dat_rmr_create_for_ep (

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 OUT DAT_RMR_HANDLE *); /* rmr_handle
*/

extern DAT_RETURN dat_rmr_query (

 IN DAT_RMR_HANDLE, /* rmr_handle
*/

 IN DAT_RMR_PARAM_MASK,/* rmr_param_mask
*/

 OUT DAT_RMR_PARAM *); /* rmr_param
*/

extern DAT_RETURN dat_rmr_bind (

 IN DAT_RMR_HANDLE, /* rmr_handle
*/

 IN DAT_LMR_HANDLE, /* lmr_handle
*/

 IN const DAT_LMR_TRIPLET *, /* lmr_
triplet */

 IN DAT_MEM_PRIV_FLAGS, /* mem_priv
*/

 IN DAT_VA_TYPE, /* va_type */

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_RMR_COOKIE, /* user_cookie
*/

 IN DAT_COMPLETION_FLAGS,/* completion_flags
*/

 OUT DAT_RMR_CONTEXT *); /* con-
text */
 Page 391

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
extern DAT_RETURN dat_rmr_free (

 IN DAT_RMR_HANDLE);/* rmr_handle */

/* PSP functions */

extern DAT_RETURN dat_psp_create (

 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_CONN_QUAL, /* conn_qual
*/

 IN DAT_EVD_HANDLE, /* evd_handle
*/

 IN DAT_PSP_FLAGS, /* psp_flags
*/

 OUT DAT_PSP_HANDLE *);/* psp_handle */

extern DAT_RETURN dat_psp_create_any (

 IN DAT_IA_HANDLE, /* ia_handle
*/

 OUT DAT_CONN_QUAL *, /* conn_qual
*/

 IN DAT_EVD_HANDLE, /* evd_handle
*/

 IN DAT_PSP_FLAGS, /* psp_flags
*/

 OUT DAT_PSP_HANDLE *);/* psp_handle */

extern DAT_RETURN dat_psp_query (

 IN DAT_PSP_HANDLE, /* psp_handle */

 IN DAT_PSP_PARAM_MASK,/* psp_param_mask */

 OUT DAT_PSP_PARAM *); /* psp_param */

extern DAT_RETURN dat_psp_free (

 IN DAT_PSP_HANDLE); /* psp_handle */

/* RSP functions */

extern DAT_RETURN dat_rsp_create (

 IN DAT_IA_HANDLE, /* ia_handle
*/
 Page 392

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 IN DAT_CONN_QUAL, /* conn_qual
*/

 IN DAT_EP_HANDLE, /* ep_handle
*/

 IN DAT_EVD_HANDLE, /* evd_handle
*/

 OUT DAT_RSP_HANDLE *);/* rsp_handle */

extern DAT_RETURN dat_rsp_query (

 IN DAT_RSP_HANDLE, /* rsp_handle */

 IN DAT_RSP_PARAM_MASK,/* rsp_param_mask
*/

 OUT DAT_RSP_PARAM *); /* rsp_param */

extern DAT_RETURN dat_rsp_free (

 IN DAT_RSP_HANDLE); /* rsp_handle */

/* CSP functions */

extern DAT_RETURN dat_csp_create (

 IN DAT_IA_HANDLE, /* ia_handle */

 IN DAT_COMM *, /* communicator */

 IN DAT_IA_ADDRESS, /* address */

 IN DAT_EVD_HANDLE, /* evd_handle */

 OUT DAT_CSP_HANDLE *); /* csp_handle */

extern DAT_RETURN dat_csp_query (

 IN DAT_CSP_HANDLE, /* csp_handle */

 IN DAT_CSP_PARAM_MASK,/* csp_param_mask
*/

 OUT DAT_CSP_PARAM *); /* csp_param */

extern DAT_RETURN dat_csp_free (

 IN DAT_CSP_HANDLE); /* csp_handle */

/* PZ functions */

extern DAT_RETURN dat_pz_create (

 IN DAT_IA_HANDLE, /* ia_handle
*/
 Page 393

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 OUT DAT_PZ_HANDLE *);/* pz_handle */

extern DAT_RETURN dat_pz_query (

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 IN DAT_PZ_PARAM_MASK,/* pz_param_mask */

 OUT DAT_PZ_PARAM *); /* pz_param */

extern DAT_RETURN dat_pz_free (

 IN DAT_PZ_HANDLE); /* pz_handle */

/* SRQ functions */

extern DAT_RETURN dat_srq_create(

 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 IN DAT_SRQ_ATTR *, /* srq_attr
*/

 OUT DAT_SRQ_HANDLE *); /* srq_handle */

extern DAT_RETURN dat_srq_free(

IN DAT_SRQ_HANDLE); /* srq_handle */

extern DAT_RETURN dat_srq_post_recv(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT, /* num_segments */

IN DAT_LMR_TRIPLET *, /* local_iov */

IN DAT_DTO_COOKIE); /* user_cookie */

extern DAT_RETURN dat_srq_query(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_SRQ_PARAM_MASK, /* srq_param_mask */

OUT DAT_SRQ_PARAM *); /* srq_param */

extern DAT_RETURN dat_srq_resize(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT); /* srq_max_recv_dto
*/
 Page 394

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

extern DAT_RETURN dat_srq_set_lw(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT); /* low_watermark */

/*

* DAT registry functions.

*

* Note the dat_ia_open and dat_ia_close functions are linked
to

* registration code which "redirects" to the appropriate
provider.

*/

extern DAT_RETURN dat_registry_list_providers(

IN DAT_COUNT, /* max_to_return */

OUT DAT_COUNT *, /* entries_returned */

OUT DAT_PROVIDER_INFO *(dat_provider_list[]) /* dat_
provider_list */

);

/*

* DAT error functions.

*/

extern DAT_RETURN dat_strerror (

IN DAT_RETURN, /* dat function return */

OUT const char ** , /* major message string */

OUT const char **); /* minor message string */

#endif /* _DAT_H_ */

A.5 GENERIC STATUS CODES

/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *
 Page 395

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * 1) under the terms of the "Common Public License 1.0". The
license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 Page 396

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/***
**

 *

 * HEADER: dat_error.h
 *

 * PURPOSE: DAT return codes

 *

 * Description: Header file for "DAPL: Direct Access Pro-
gramming

 * Library, Version: 1.2"

 *

* Mapping rules: Error types are compound types, as mapped
out below.

*

 ***/

#ifndef _DAT_ERROR_H_

#define _DAT_ERROR_H_

/*

 *

 * All return codes are actually a 3-way tuple:

 *

 * type: DAT_RETURN_CLASS DAT_RETURN_TYPE DAT_RETURN_SUBTYPE

 * bits: 31-30 29-16 15-0

 *
 Page 397

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * +---
---------------+

 * |3130 | 29282726252423222120191817 |
1615141312111009080706054003020100|

 * |CLAS | DAT_TYPE_STATUS | SUBTYPE_STATUS |

 * +---
---------------+

 */

/*

 * Class Bits

 */

#define DAT_CLASS_ERROR 0x80000000

#define DAT_CLASS_WARNING 0x40000000

#define DAT_CLASS_SUCCESS 0x00000000

/*

 * DAT Error bits

 * /

#define DAT_TYPE_MASK 0x3fff0000 /* mask for DAT_TYPE_
STATUS bits */

#define DAT_SUBTYPE_MASK 0x0000FFFF/* mask for DAT_SUBTYPE_
STATUS bits */

/*

 * Determining the success of an operation is best done with
a macro;

 * each of these returns a boolean value.

 */

#define DAT_IS_WARNING(status) ((DAT_UINT32)(status) &
DAT_CLASS_WARNING)

#define DAT_GET_TYPE(status) ((DAT_UINT32)(status) & DAT_
TYPE_MASK)

#define DAT_GET_SUBTYPE(status) ((DAT_UINT32)(status) &
DAT_SUBTYPE_MASK)

/*

 * DAT return types. The ERROR bit is enabled for these def-
initions
 Page 398

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 */

typedef enum dat_return_type

 {

 /* The operation was suc-
cessful. */

 DAT_SUCCESS = 0x00000000,

 /* The operation was aborted because IA was closed or
EVD was

 * de-
stroyed. */

 DAT_ABORT = 0x00010000,

 /* The specified Connection Qualifier was in use.
*/

 DAT_CONN_QUAL_IN_USE = 0x00020000,

 /* The operation failed due to resource limita-
tions. */

 DAT_INSUFFICIENT_RESOURCES = 0x00030000,

 /* Provider internal error. This error can be returned
by any operation

 * when the Provider has detected an internal error. This
error does not

 * mask any error caused by the Con-
sumer. */

 DAT_INTERNAL_ERROR = 0x00040000,

 /* One of the DAT handles was in-
valid. */

 DAT_INVALID_HANDLE = 0x00050000,

 /* One of the parameters was in-
valid. */

 DAT_INVALID_PARAMETER = 0x00060000,

 /* One of the parameters was invalid for this operation.
There are Event

 * Streams associated with the Event Dispatcher feeding
it. */

 DAT_INVALID_STATE = 0x00070000,
 Page 399

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 /* The size of the receiving buffer is too small for
sending buffer data.

 * The size of the local buffer is too small for the data
of the remote

 * buffer.
*/

 DAT_LENGTH_ERROR = 0x00080000,

 /* The requested Model was not supported by the Provider.
*/

 DAT_MODEL_NOT_SUPPORTED = 0x00090000,

 /* The specified IA name was not found in the list of
registered Providers. */

 DAT_PROVIDER_NOT_FOUND = 0x000A0000,

 /* Protection violation for local or remote memory access.
Protection Zone

 * mismatch between an LMR of one of the local_iov seg-
ments and the local

 * End-
point. */

 DAT_PRIVILEGES_VIOLATION = 0x000B0000,

 /* Privileges violation for local or remote memory access.
One of the LMRs

 * used in local_iov was either invalid or did not have
the local read

 * privi-
leges. */

 DAT_PROTECTION_VIOLATION = 0x000C0000,

 /* The operation timed out without a notifica-
tion. */

 DAT_QUEUE_EMPTY = 0x000D0000,

 /* The Event Dispatcher queue is full.
*/

 DAT_QUEUE_FULL = 0x000E0000,

 /* The operation timed out. uDAPL ONLY
*/
 Page 400

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_TIMEOUT_EXPIRED = 0x000F0000,

/* The provider name was already regis-
tered */

DAT_PROVIDER_ALREADY_REGISTERED =0x00100000,

/* The provider is "in-use" and cannot be closed at this
time */

DAT_PROVIDER_IN_USE =0x00110000,

/* The requested remote address is not valid or not reach-
able */

DAT_INVALID_ADDRESS =0x00120000,

/* [Unix only] dat_evd_wait or dat_cno_wait has been in-
terrupted. */

DAT_INTERRUPTED_CALL =0x00130000,

/* No Connection Qualifiers are available*/

DAT_CONN_QUAL_UNAVAILABLE =0x00140000,

/* The specified IP Port was in use. */

 DAT_PORT_IN_USE = 0x00160000,

/* The specified COMM not supported. */

 DAT_COMM_NOT_SUPPORTED = 0x00170000,

/* The DAT extensions support. */

 DAT_EXTENSION_BASE = 0x10000000,

/* range 0x10000000 - 0x3FFF0000 is reserved for extension */

/* Provider does not support the operation yet. */

DAT_NOT_IMPLEMENTED = 0xFFFF0000

 } DAT_RETURN_TYPE;

typedef DAT_UINT32 DAT_RETURN;

/* Backward compatibility with DAT 1.0 */

#define DAT_NAME_NOT_FOUND DAT_PROVIDER_NOT_FOUND
 Page 401

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/*

 * DAT_RETURN_SUBTYPE listing

 *

*/

typedef enum dat_return_subtype

 {

/* First element is no subtype */

 DAT_NO_SUBTYPE,

 /* ABORT sub types */

 /* call was interrupted by a signal, or otherwise */

 DAT_SUB_INTERRUPTED,

 /* DAT_CONN_QUAL_IN_USE has no subtypes */

 /* INSUFFICIENT_RESOURCES subtypes */

 DAT_RESOURCE_MEMORY,

 DAT_RESOURCE_DEVICE,

 DAT_RESOURCE_TEP,/* transport endpoint, e.g. QP */

 DAT_RESOURCE_TEVD,/* transport EVD, e.g. CQ */

 DAT_RESOURCE_PROTECTION_DOMAIN,

 DAT_RESOURCE_MEMORY_REGION, /* HCA memory for LMR or RMR
*/

 DAT_RESOURCE_ERROR_HANDLER,

 DAT_RESOURCE_CREDITS, /* e.g outstanding RDMA Read credit
as target */

 DAT_RESOURCE_SRQ,

 /* DAT_INTERNAL_ERROR has no subtypes */

 /* INVALID_HANDLE subtypes */

 DAT_INVALID_HANDLE_IA,

 DAT_INVALID_HANDLE_EP,

 DAT_INVALID_HANDLE_LMR,

 DAT_INVALID_HANDLE_RMR,

 DAT_INVALID_HANDLE_PZ,

 DAT_INVALID_HANDLE_PSP,

 DAT_INVALID_HANDLE_RSP,
 Page 402

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_INVALID_HANDLE_CR,

 DAT_INVALID_HANDLE_CNO,

 DAT_INVALID_HANDLE_EVD_CR,

 DAT_INVALID_HANDLE_EVD_REQUEST,

 DAT_INVALID_HANDLE_EVD_RECV,

 DAT_INVALID_HANDLE_EVD_CONN,

 DAT_INVALID_HANDLE_EVD_ASYNC,

 DAT_INVALID_HANDLE_SRQ,

 DAT_INVALID_HANDLE_CSP,

 DAT_INVALID_HANDLE1,

 DAT_INVALID_HANDLE2,

 DAT_INVALID_HANDLE3,

 DAT_INVALID_HANDLE4,

 DAT_INVALID_HANDLE5,

 DAT_INVALID_HANDLE6,

 DAT_INVALID_HANDLE7,

 DAT_INVALID_HANDLE8,

 DAT_INVALID_HANDLE9,

 DAT_INVALID_HANDLE10,

 /* DAT_INVALID_PARAMETER subtypes */

 DAT_INVALID_ARG1,

 DAT_INVALID_ARG2,

 DAT_INVALID_ARG3,

 DAT_INVALID_ARG4,

 DAT_INVALID_ARG5,

 DAT_INVALID_ARG6,

 DAT_INVALID_ARG7,

 DAT_INVALID_ARG8,

 DAT_INVALID_ARG9,

 DAT_INVALID_ARG10,

 /* DAT_INVALID_EP_STATE subtypes */

 DAT_INVALID_STATE_EP_UNCONNECTED,

 DAT_INVALID_STATE_EP_ACTCONNPENDING,

 DAT_INVALID_STATE_EP_PASSCONNPENDING,
 Page 403

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_INVALID_STATE_EP_TENTCONNPENDING,

 DAT_INVALID_STATE_EP_CONNECTED,

 DAT_INVALID_STATE_EP_DISCONNECTED,

 DAT_INVALID_STATE_EP_RESERVED,

 DAT_INVALID_STATE_EP_COMPLPENDING,

 DAT_INVALID_STATE_EP_DISCPENDING,

 DAT_INVALID_STATE_EP_PROVIDERCONTROL,

 DAT_INVALID_STATE_EP_NOTREADY,

 DAT_INVALID_STATE_EP_RECV_WATERMARK,

 DAT_INVALID_STATE_EP_PZ,

 DAT_INVALID_STATE_EP_EVD_REQUEST,

 DAT_INVALID_STATE_EP_EVD_RECV,

 DAT_INVALID_STATE_EP_EVD_CONNECT,

 DAT_INVALID_STATE_EP_UNCONFIGURED,

 DAT_INVALID_STATE_EP_UNCONFRESERVED,

 DAT_INVALID_STATE_EP_UNCONFPASSIVE,

 DAT_INVALID_STATE_EP_UNCONFTENTATIVE,

 DAT_INVALID_STATE_CNO_IN_USE,

 DAT_INVALID_STATE_CNO_DEAD,

/* EVD states. Enabled/Disabled, Waitable/Unwaitable, and

Notify/Solicited/Threshold are three orthogonal
bands of

EVD state. The Threshold one is uDAPL specific.*/

 DAT_INVALID_STATE_EVD_OPEN,

/* EVD can be either in enabled or disabled, but not both
or neither

at the same time */

 DAT_INVALID_STATE_EVD_ENABLED,

 DAT_INVALID_STATE_EVD_DISABLED,

/* EVD can be either in waitable or unwaitable, but not
both or neither

at the same time */

 DAT_INVALID_STATE_EVD_WAITABLE,

 DAT_INVALID_STATE_EVD_UNWAITABLE,

/* Do not release an EVD if it is in use */

 DAT_INVALID_STATE_EVD_IN_USE,
 Page 404

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

/* EVD can be either in notify or solicited or threshold,
but not any pair,

or all, or none at the same time. The threshold one is
for uDAPL only. */

 DAT_INVALID_STATE_EVD_CONFIG_NOTIFY,

 DAT_INVALID_STATE_EVD_CONFIG_SOLICITED,

 DAT_INVALID_STATE_EVD_CONFIG_THRESHOLD,

 DAT_INVALID_STATE_EVD_WAITER,

 DAT_INVALID_STATE_EVD_ASYNC,/* Async EVD required */

 DAT_INVALID_STATE_IA_IN_USE,

 DAT_INVALID_STATE_LMR_IN_USE,

 DAT_INVALID_STATE_LMR_FREE,

 DAT_INVALID_STATE_PZ_IN_USE,

 DAT_INVALID_STATE_PZ_FREE,

/* DAT_INVALID_STATE_SRQ subtypes */

 DAT_INVALID_STATE_SRQ_OPERATIONAL,

 DAT_INVALID_STATE_SRQ_ERROR,

 DAT_INVALID_STATE_SRQ_IN_USE,

/* DAT_LENGTH_ERROR has no subtypes
*/

/* DAT_MODEL_NOT_SUPPORTED has no sub-
types */

/* DAT_PRIVILEGES_VIOLATION subtypes
*/

DAT_PRIVILEGES_READ,

 DAT_PRIVILEGES_WRITE,

 DAT_PRIVILEGES_RDMA_READ,

 DAT_PRIVILEGES_RDMA_WRITE,

 /* DAT_PROTECTION_VIOLATION subtypes */

 DAT_PROTECTION_READ,

 DAT_PROTECTION_WRITE,

 DAT_PROTECTION_RDMA_READ,

 DAT_PROTECTION_RDMA_WRITE,

 Page 405

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 /* DAT_QUEUE_EMPTY has no subtypes */

 /* DAT_QUEUE_FULL has no subtypes */

 /* DAT_TIMEOUT_EXPIRED has no subtypes */

 /* DAT_PROVIDER_ALREADY_REGISTERED has no subtypes */

 /* DAT_PROVIDER_IN_USE has no subtypes */

/* DAT_INVALID_ADDRESS subtypes */

/* Unsupported addresses - those that are not Malformed,
but

are incorrect for use in DAT (regardless of local routing
capabilities):

IPv6 Multicast Addresses (ff/8)

IPv4 Broadcast/Multicast Addresses */

DAT_INVALID_ADDRESS_UNSUPPORTED,

/* Unreachable addresses - A Provider might know that cer-
tain

addresses are unreachable immediately. One example would
be

an IPv6 addresses on an IPv4-only system.

This can also be returned if it is known that there is no
route to the host.

A Provider is not obligated to check for this condition.
*/

DAT_INVALID_ADDRESS_UNREACHABLE,

/* Malformed addresses - These cannot be valid in any con-
text.

 Those listed in RFC1884 section 2.3 as “Reserved” or “Un-
assigned”. */

DAT_INVALID_ADDRESS_MALFORMED,

/* DAT_INTERRUPTED_CALL has no subtypes */

/* DAT_CONN_QUAL_UNAVAILABLE has no subtypes */

/* DAT_PROVIDER_NOT_FOUND subtypes. Erratta to the 1.1
spec */

 DAT_NAME_NOT_REGISTERED,

 DAT_MAJOR_NOT_FOUND,

 DAT_MINOR_NOT_FOUND,

 DAT_THREAD_SAFETY_NOT_FOUND

} DAT_RETURN_SUBTYPE;
 Page 406

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#endif /* _DAT_ERROR_H_ */

A.6 UDAT_VENDOR_SPECIFIC.H
/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation
 Page 407

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: udat_vendor_specific.h

 *

 * PURPOSE: Vendor defined macros & support.

 *

 * Description: Header file for "uDAPL: User Direct Access

 * ProgrammingLibrary, Version: 1.2"

 *

 * Mapping rules:

 *

 *
 Page 408

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

**
*****/

#ifndef _UDAT_VENDOR_SPECIFIC_H_

#define _UDAT_VENDOR_SPECIFIC_H_

#include <dat/dat_vendor_specific.h>

/* Vendor-specific extensions */

#if defined(_AMMASSO)

#elif defined(_IBM)

#elif defined(_INFINICON)

#elif defined(_INTEL)

#elif defined(_JNI)

#elif defined(_MELLANOX)

#elif defined(_MYRINET)

#elif defined(_SILIQUENT)

#elif defined(_TOPSPIN)

#elif defined(_VOLTAIRE)

#endif

#endif /* _UDAT_VENDOR_SPECIFIC_H_ */

A.7 DAT_VENDOR_SPECIFIC.H
/*

 *
 Page 409

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0". The
license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote
 Page 410

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/***

 *

 * HEADER: dat_vendor_specific.h

 *

 * PURPOSE:

 *

 * Description: Header file for "DAPL: Direct Access Pro-
gramming

 * Library, Version: 1.2"

 *

 * Mapping rules:

 *

**
*****/

#ifndef _DAT_VENDOR_SPECIFIC_H_

#define _DAT_VENDOR_SPECIFIC_H_
 Page 411

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/* Vendor-specific extensions */

#if defined(_AMMASSO)

#elif defined(_IBM)

#elif defined(_INFINICON)

#elif defined(_INTEL)

#elif defined(_JNI)

#elif defined(_MELLANOX)

#elif defined(_MYRINET)

#elif defined(_SILIQUENT)

#elif defined(_TOPSPIN)

#elif defined(_VOLTAIRE)

#endif

#endif /* _DAT_VENDOR_SPECIFIC_H_ */
 Page 412

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

APPENDIX B: UDAPL-2.0 REGISTRATION HEADERS

B.1 DAT REGISTRY

/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright

 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright
 Page 413

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: dat_registry.h
 *

 * PURPOSE: DAT registration API signatures

 *

 * Description: Header file for "DAPL: Direct Access Program-
ming

 * Library, Version: 2.0"

 *
 Page 414

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * Contains registration external reference signatures

 * for dat registry functions. This file is *only*

* included by providers, not consumers.

 *

 * Mapping rules:

 * All global symbols are prepended with DAT_ or dat_

 * All DAT objects have an 'api' tag which, such as 'ep' or
'lmr' .

 * The method table is in the provider definition structure.

 *

 *

**
/

#ifndef _DAT_REGISTRY_H_

#define _DAT_REGISTRY_H_

#if defined(_UDAT_H_)

#include <dat/udat_redirection.h>

#elif defined(_KDAT_H_)

#include <dat/kdat_redirection.h>

#else

#error Must include udat.h or kdat.h

#endif

/*

 * dat registration API.

 *

 * Technically the dat_ia_open is part of the registration
API. This

 * is so the registration module can map the device name to
a provider

 * structure and then call the provider dat_ia_open function.

 * dat_is_close is also part of the registration API so that
the

 * registration code can be aware when an ia is no longer in
use.

 *

 */

extern DAT_RETURN dat_registry_add_provider(
 Page 415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
IN const DAT_PROVIDER*, /* provider */

IN const DAT_PROVIDER_INFO*);/* provider info */

extern DAT_RETURN dat_registry_remove_provider(

IN const DAT_PROVIDER*, /* provider */

IN const DAT_PROVIDER_INFO*);/* provider info */

/*

* Provider initialization APIs.

 *

 * Providers that support being automatically loaded by the
Registry must

* implement these APIs and export them as public symbols.

*/

#define DAT_PROVIDER_INIT_FUNC dat_provider_init

#define DAT_PROVIDER_FINI_FUNC dat_provider_fini

#define DAT_PROVIDER_INIT_FUNC_STR "dat_provider_init"

#define DAT_PROVIDER_FINI_FUNC_STR "dat_provider_fini"

typedef void (*dat_provider_init)(

IN const DAT_PROVIDER_INFO *,/* provider info */

IN const char *); /* instance data */

typedef void (*dat_provider_fini) (

IN const DAT_PROVIDER_INFO *);/* provider info */

typedef enum dat_ha_relationship {

DAT_HA_FALSE;

DAT_HA_TRUE;

DAT_HA_UNKNOWN;

DAT_HA_CONFLICTING;

DAT_HA_EXTENSION_BASE;

} DAT_HA_RELATIONSHIP;

extern DAT_RETURN dat_registry_providers_related (

IN const DAT_NAME_PTR,

IN const DAT_NAME_PTR,
 Page 416

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

OUT DAT_HA_RELATIONSHIP*);

extern DAT_RETURN dat_ia_ha_related (

IN DAT_IA_HANDLE,

IN const DAT_NAME_PTR,

OUT DAT_BOOLEAN*);

#endif /* _DAT_REGISTRY_H_ */

B.2 UDAT_REDIRECTION.H
/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright
 Page 417

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: udat_redirection.h
 *

 * PURPOSE: User DAT macro definitions

 *
 Page 418

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * Description: Macros to invoke DAPL functions from the dat_
registry

 *

* Mapping rules:

 * All global symbols are prepended with DAT_ or dat_

 * All DAT objects have an 'api' tag which, such as 'ep'
or 'lmr'

 * The method table is in the provider definition struc-
ture.

*

*

 *

**
/

#ifndef _UDAT_REDIRECTION_H_

#define _UDAT_REDIRECTION_H_

#define DAT_LMR_CREATE(ia,mem_type,reg_desc,len,pz,priv,\

 va_type,lmr,lmr_context,rmr_context,reg_
len,reg_addr) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->lmr_create_func)(\

 (ia),\

 (mem_type),\

 (reg_desc),\

 (len),\

 (pz),\

 (priv),\

 (va_type),\

 (lmr),\

 (lmr_context),\

(rmr_context),\

(reg_len),\

 (reg_addr))

#define DAT_EVD_CREATE(ia,qlen,cno,flags,handle) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->evd_create_func)(\

 (ia),\
 Page 419

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 (qlen),\

 (cno),\

 (flags),\

 (handle))

#define DAT_EVD_ENABLE(evd) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_enable_func)(\

 (evd))

#define DAT_EVD_WAIT(evd,timeout,threshold,event,nmore) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_wait_func)(\

 (evd),\

 (timeout),\

 (threshold),\

 (event),\

 (nmore))

#define DAT_EVD_DISABLE(evd) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_disable_func)(\

 (evd))

#define DAT_EVD_SET_UNWAITABLE(evd) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_set_unwaitable_
func)(\

 (evd))

#define DAT_EVD_CLEAR_UNWAITABLE(evd) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_clear_unwaitable_
func)(\

 (evd))

#define DAT_EVD_MODIFY_CNO(evd,cno) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_modify_cno_func)(\

 (evd),\

 (cno))

#define DAT_CNO_CREATE(ia,proxy,cno) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->cno_create_func)(\

 (ia),\
 Page 420

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 (proxy),\

 (cno))

#define DAT_CNO_MODIFY_AGENT(cno,proxy) \

 (*DAT_HANDLE_TO_PROVIDER(cno)->cno_modify_agent_
func)(\

 (cno),\

 (proxy))

#define DAT_CNO_QUERY(cno,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(cno)->cno_query_func)(\

 (cno),\

 (mask),\

 (param))

#define DAT_CNO_FREE(cno) \

 (*DAT_HANDLE_TO_PROVIDER(cno)->cno_free_func)(\

 (cno))

#define DAT_CNO_WAIT(cno,timeout,evd) \

 (*DAT_HANDLE_TO_PROVIDER(cno)->cno_wait_func)(\

 (cno),\

 (timeout),\

 (evd))

/***

 * FUNCTION PROTOTYPES

 *

 * User DAT function call definitions,

 *

**
******/

typedef DAT_RETURN (*DAT_LMR_CREATE_FUNC) (

IN DAT_IA_HANDLE, /* ia_handle */

IN DAT_MEM_TYPE, /* mem_type */

IN DAT_REGION_DESCRIPTION,/* region_description
*/
 Page 421

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
IN DAT_VLEN, /* length */

IN DAT_PZ_HANDLE, /* pz_handle */

IN DAT_MEM_PRIV_FLAGS, /* privileges */

IN DAT_VA_TYPE, /* va_type */

OUT DAT_LMR_HANDLE *, /* lmr_handle */

OUT DAT_LMR_CONTEXT *, /* lmr_context */

OUT DAT_RMR_CONTEXT *, /* rmr_context */

OUT DAT_VLEN *, /* registered_length */

OUT DAT_VADDR *); /* registered_address */

/* Event functions */

typedef DAT_RETURN (*DAT_EVD_CREATE_FUNC) (

IN DAT_IA_HANDLE, /* ia_handle */

IN DAT_COUNT, /* evd_min_qlen */

IN DAT_CNO_HANDLE, /* cno_handle */

IN DAT_EVD_FLAGS, /* evd_flags */

OUT DAT_EVD_HANDLE *); /* evd_handle */

typedef DAT_RETURN (*DAT_EVD_MODIFY_CNO_FUNC) (

IN DAT_EVD_HANDLE, /* evd_handle */

IN DAT_CNO_HANDLE); /* cno_handle */

typedef DAT_RETURN (*DAT_CNO_CREATE_FUNC) (

IN DAT_IA_HANDLE, /* ia_handle
*/

IN DAT_OS_WAIT_PROXY_AGENT, /* agent
*/

OUT DAT_CNO_HANDLE *); /* cno_handle
*/

typedef DAT_RETURN (*DAT_CNO_MODIFY_AGENT_FUNC) (

IN DAT_CNO_HANDLE, /* cno_handle
*/

IN DAT_OS_WAIT_PROXY_AGENT); /* agent
*/

typedef DAT_RETURN (*DAT_CNO_QUERY_FUNC) (

IN DAT_CNO_HANDLE, /* cno_handle
*/
 Page 422

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

IN DAT_CNO_PARAM_MASK, /* cno_param_mask
*/

OUT DAT_CNO_PARAM *); /* cno_param
*/

typedef DAT_RETURN (*DAT_CNO_FREE_FUNC) (

IN DAT_CNO_HANDLE);/* cno_handle */

typedef DAT_RETURN (*DAT_CNO_WAIT_FUNC) (

IN DAT_CNO_HANDLE, /* cno_handle
*/

IN DAT_TIMEOUT, /* tim-
eout */

OUT DAT_EVD_HANDLE *); /* evd_handle
*/

typedef DAT_RETURN (*DAT_EVD_ENABLE_FUNC) (

IN DAT_EVD_HANDLE);/* evd_handle */

typedef DAT_RETURN (*DAT_EVD_WAIT_FUNC) (

IN DAT_EVD_HANDLE, /* evd_handle */

IN DAT_TIMEOUT, /* timeout */

IN DAT_COUNT, /* threshold */

OUT DAT_EVENT *, /* event */

OUT DAT_COUNT *); /* N more events */

typedef DAT_RETURN (*DAT_EVD_DISABLE_FUNC) (

IN DAT_EVD_HANDLE);/* evd_handle */

typedef DAT_RETURN (*DAT_EVD_SET_UNWAITABLE_FUNC) (

IN DAT_EVD_HANDLE); /* evd_handle */

typedef DAT_RETURN (*DAT_EVD_CLEAR_UNWAITABLE_FUNC) (

IN DAT_EVD_HANDLE); /* evd_handle */

#include <dat/dat_redirection.h>
struct dat_provider

 {

 const char * device_name;
 Page 423

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 DAT_PVOID extension;

 DAT_IA_OPEN_FUNC ia_open_func;

 DAT_IA_QUERY_FUNC ia_query_func;

 DAT_IA_CLOSE_FUNC ia_close_func;

 DAT_SET_CONSUMER_CONTEXT_FUNC set_consumer_context_
func;

 DAT_GET_CONSUMER_CONTEXT_FUNC get_consumer_context_
func;

 DAT_GET_HANDLE_TYPE_FUNC get_handle_type_func;

 DAT_CNO_CREATE_FUNC cno_create_func;
/* udat only */

 DAT_CNO_MODIFY_AGENT_FUNC cno_modify_agent_
func; /* udat only */

 DAT_CNO_QUERY_FUNC cno_query_func;
/* udat only */

 DAT_CNO_FREE_FUNC cno_free_func;
/* udat only */

 DAT_CNO_WAIT_FUNC cno_wait_func;
/* udat only */

DAT_CR_QUERY_FUNC cr_query_func;

DAT_CR_ACCEPT_FUNC cr_accept_func;

DAT_CR_REJECT_FUNC cr_reject_func;

DAT_CR_HANDOFF_FUNC cr_handoff_func;

DAT_EVD_CREATE_FUNC evd_create_func;

DAT_EVD_QUERY_FUNC evd_query_func;

 DAT_EVD_MODIFY_CNO_FUNC evd_modify_cno_func;
/* udat only */

 DAT_EVD_ENABLE_FUNC evd_enable_func;
/* udat only */

 DAT_EVD_DISABLE_FUNC evd_disable_func;
/* udat only */

 DAT_EVD_WAIT_FUNC evd_wait_func;
/* udat only */

 DAT_EVD_RESIZE_FUNC evd_resize_func;
 Page 424

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 DAT_EVD_POST_SE_FUNC evd_post_se_func;

 DAT_EVD_DEQUEUE_FUNC evd_dequeue_func;

 DAT_EVD_FREE_FUNC evd_free_func;

 DAT_EP_CREATE_FUNC ep_create_func;

 DAT_EP_QUERY_FUNC ep_query_func;

 DAT_EP_MODIFY_FUNC ep_modify_func;

 DAT_EP_CONNECT_FUNC ep_connect_func;

 DAT_EP_DUP_CONNECT_FUNC ep_dup_connect_func;

 DAT_EP_DISCONNECT_FUNC ep_disconnect_func;

 DAT_EP_POST_SEND_FUNC ep_post_send_func;

 DAT_EP_POST_RECV_FUNC ep_post_recv_func;

 DAT_EP_POST_RDMA_READ_FUNC ep_post_rdma_read_func;

 DAT_EP_POST_RDMA_WRITE_FUNC ep_post_rdma_write_func;

 DAT_EP_GET_STATUS_FUNC ep_get_status_
func;

 DAT_EP_FREE_FUNC ep_free_func;

 DAT_LMR_CREATE_FUNC lmr_create_func;

 DAT_LMR_QUERY_FUNC lmr_query_func;

 DAT_LMR_FREE_FUNC lmr_free_func;

 DAT_RMR_CREATE_FUNC rmr_create_func;

 DAT_RMR_QUERY_FUNC rmr_query_func;

 DAT_RMR_BIND_FUNC rmr_bind_func;

 DAT_RMR_FREE_FUNC rmr_free_func;

 DAT_PSP_CREATE_FUNC psp_create_func;

 DAT_PSP_QUERY_FUNC psp_query_func;

 DAT_PSP_FREE_FUNC psp_free_func;

 DAT_RSP_CREATE_FUNC rsp_create_func;

 DAT_RSP_QUERY_FUNC rsp_query_func;

 DAT_RSP_FREE_FUNC rsp_free_func;

 DAT_PZ_CREATE_FUNC pz_create_func;

 DAT_PZ_QUERY_FUNC pz_query_func;

 DAT_PZ_FREE_FUNC pz_free_func;
 Page 425

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
/* dat-1.1 */

DAT_PSP_CREATE_ANY_FUNC psp_create_any_func;/* dat-1.1
*/

DAT_EP_RESET_FUNC ep_reset_func;/*
dat-1.1 */

/* udat-1.1 */

DAT_EVD_SET_UNWAITABLE_FUNC evd_set_unwaitable_func;
/* udat-1.1 */

DAT_EVD_CLEAR_UNWAITABLE_FUNC evd_clear_unwaitable_func;
/* udat-1.1 */

/* dat-1.2 */

 DAT_LMR_SYNC_RDMA_READ_FUNC lmr_sync_rdma_read_func;

 DAT_LMR_SYNC_RDMA_WRITE_FUNClmr_sync_rdma_write_func;

 DAT_EP_CREATE_WITH_SRQ_FUNC ep_create_with_srq_func;

 DAT_EP_RECV_QUERY_FUNC ep_recv_query_func;

 DAT_EP_SET_WATERMARK_FUNC ep_set_watermark_func;

 DAT_SRQ_CREATE_FUNC srq_create_func;

 DAT_SRQ_FREE_FUNC srq_free_func;

 DAT_SRQ_POST_RECV_FUNC srq_post_recv_func;

 DAT_SRQ_QUERY_FUNC srq_query_func;

 DAT_SRQ_RESIZE_FUNC srq_resize_func;

 DAT_SRQ_SET_LW_FUNC srq_set_lw_func;

/* DAT 2.0 functions */

 DAT_CSP_CREATE_FUNC csp_create_func;

 DAT_CSP_QUERY_FUNC csp_query_func;

 DAT_CSP_FREE_FUNC csp_free_func;

 DAT_EP_COMMON_CONNECT ep_common_connect_func;

 DAT_RMR_CREATE_FOR_EP_FUNC rmr_create_for_ep_func;

DAT_EP_POST_SEND_WITH_INVALIDATE_FUNC ep_post_send_
with_invalidate_func;

 DAT_EP_POST_RDMA_READ_TO_RMR_FUNC
ep_post_rdma_read_to_rmr_func;
 Page 426

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

DAT_IA_HA_RELATED ia_ha_related;

#ifdef DAT_EXTENSIONS

DAT_HANDLE_EXTENDEDOP_FUNC handle_extendedop_func;

#endif

};

#endif /* _UDAT_REDIRECTION_H_ */

B.3 DAT_REDIRECTION.H
/*

 *

 * Copyright (c) 2002-2004, Network Appliance, Inc. All
rights reserved.

 *

 * This Software is licensed under both of the following two
licenses:

 *

 * 1) under the terms of the "Common Public License 1.0".
The license is also

 * available from the Open Source Initiative, see

 * http://www.opensource.org/licenses/cpl.php.

 *

 * OR

 *

 * 2) under the terms of the "The BSD License". The license
is also available

 * from the Open Source Initiative, see

 * http://www.opensource.org/licenses/bsd-license.php.

 *

 * Licensee has the right to choose either one of the above
two licenses.

 *

 * Redistribution and use in source and binary forms, with
or without

 * modification, are permitted provided that the following
conditions are

 * met:

 *

 * Redistributions of source code must retain both the above
copyright
 Page 427

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 * notice and either one of the license notices.

 *

 * Redistributions in binary form must reproduce both the
above copyright

 * notice, either one of the license notices in the documen-
tation

 * and/or other materials provided with the distribution.

 *

 * Neither the name of Network Appliance, Inc. nor the names
of other DAT

 * Collaborative contributors may be used to endorse or pro-
mote

 * products derived from this software without specific prior
written

 * permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

 * THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY

 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

 * POSSIBILITY OF SUCH DAMAGE.

 */

/**

 *

 * HEADER: dat_redirection.h
 *

 * PURPOSE: Defines the common redirection macros

 *
 Page 428

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 * Description: Macros to invoke DAPL functions from the dat_
registry

 *

 * Mapping rules:

 * All global symbols are prepended with DAT_ or dat_

 * All DAT objects have an 'api' tag which, such as 'ep' or
'lmr'

 * The method table is in the provider definition structure.

 *

**
/

#ifndef _DAT_REDIRECTION_H_

#define _DAT_REDIRECTION_H_

typedef struct dat_provider DAT_PROVIDER;

#ifndef DAT_HANDLE_TO_PROVIDER

/* A utility macro to fetch the Provider Library for any ob-
ject

 *

 * An alternate version could be defined for single library
systems.

 * it would look something like:

 * extern const struct dat_ia my_single_ia_provider;

 * #define DAT_HANDLE_TO_PROVIDER(ignore)

* &my_single_ia_provider

 *

 * This would allow a good compiler to avoid indirection

* overhead when making function calls.

 */

#define DAT_HANDLE_TO_PROVIDER(handle) (*(DAT_PROVIDER
**)(handle))

#endif

#define DAT_IA_QUERY (ia,evd,ia_msk,ia_ptr,p_msk,p_ptr) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->ia_query_func)(\

 (ia),\
 Page 429

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 (evd),\

 (ia_msk),\

 (ia_ptr),\

 (p_msk),\

 (p_ptr))

#define DAT_SET_CONSUMER_CONTEXT (handle,context) \

 (*DAT_HANDLE_TO_PROVIDER(handle)->set_consumer_
context_func)(\

 (handle),\

 (context))

#define DAT_GET_CONSUMER_CONTEXT (handle,context) \

 (*DAT_HANDLE_TO_PROVIDER(handle)->get_consumer_
context_func)(\

 (handle),\

 (context))

#define DAT_GET_HANDLE_TYPE (handle,handle_type) \

 (*DAT_HANDLE_TO_PROVIDER(handle)->get_handle_type_
func)(\

 (handle),\

 (handle_type))

#define DAT_CR_QUERY (cr,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(cr)->cr_query_func)(\

 (cr),\

 (mask),\

 (param))

#define DAT_CR_ACCEPT (cr,ep,size,pdata) \

 (*DAT_HANDLE_TO_PROVIDER(cr)->cr_accept_func)(\

 (cr),\

 (ep),\

 (size),\

 (pdata))

#define DAT_CR_REJECT (cr,size,pdata) \

 (*DAT_HANDLE_TO_PROVIDER(cr)->cr_reject_func)(\

 (cr),\
 Page 430

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 (size),\

 (pdata))

#define DAT_CR_HANDOFF(cr,qual) \

(*DAT_HANDLE_TO_PROVIDER(cr)->cr_handoff_func)(\

(cr), \

(qual))

#define DAT_EVD_QUERY (evd,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_query_func)(\

 (evd),\

 (mask),\

 (param))

#define DAT_EVD_RESIZE (evd,qsize) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_resize_func)(\

 (evd),\

 (qsize))

#define DAT_EVD_POST_SE (evd,event) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_post_se_func)(\

 (evd),\

 (event))

#define DAT_EVD_DEQUEUE (evd,event) \

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_dequeue_func)(\

 (evd),\

 (event))

#define DAT_EVD_FREE (evd)\

 (*DAT_HANDLE_TO_PROVIDER(evd)->evd_free_func)(\

 (evd))

#define DAT_EP_CREATE (ia,pz,in_evd,out_evd,connect_
evd,attr,ep) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->ep_create_func)(\

 (ia),\

 (pz),\

 (in_evd),\
 Page 431

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 (out_evd),\

 (connect_evd),\

 (attr),\

 (ep))

#define DAT_EP_CREATE_WITH_SRQ (ia,pz,in_evd,out_evd, \

connect_evd,srq,attr,ep) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->ep_create_with_srq_
func)(\

 (ia),\

 (pz),\

 (in_evd),\

 (out_evd),\

 (connect_evd),\

 (srq),\

 (attr),\

 (ep))

#define DAT_EP_QUERY (ep,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_query_func)(\

 (ep),\

 (mask),\

 (param))

#define DAT_EP_MODIFY (ep,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_modify_func)(\

 (ep),\

 (mask),\

 (param))

#define DAT_EP_CONNECT (ep,ia_addr,conn_qual,\

timeout,psize,pdata,qos,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_connect_func)(\

 (ep),\

 (ia_addr),\

 (conn_qual),\

 (timeout),\

 (psize),\

 (pdata),\
 Page 432

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 (qos),\

 (flags))

#define DAT_EP_COMMON_CONNECT (ep,addr,\

timeout,psize,pdata) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_common_connect_
func)(\

 (ep),\

 (addr),\

 (timeout),\

 (psize),\

 (pdata))

#define DAT_EP_DUP_CONNECT (ep,dup,timeout,psize,pdata,qos)
\

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_dup_connect_func)(\

 (ep),\

 (dup),\

 (timeout),\

 (psize),\

 (pdata),\

 (qos))

#define DAT_EP_DISCONNECT (ep,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_disconnect_func)(\

 (ep),\

 (flags))

#define DAT_EP_POST_SEND (ep,size,lbuf,cookie,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_post_send_func)(\

 (ep),\

 (size),\

 (lbuf),\

 (cookie),\

 (flags))

#define DAT_EP_POST_SEND_WITH_INVALIDATE(\

(ep,size,lbuf,cookie,flags,inv_flag,rmr_context) \

 (*DAT_HANDLE_TO_PROVIDER(ep)-> \
 Page 433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
ep_post_send_with_invalidate_func)(\

 (ep),\

 (size),\

 (lbuf),\

 (cookie),\

 (flags), \

 (inv_flag), \

 (rmr_context))

#define DAT_EP_POST_RECV (ep,size,lbuf,cookie,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_post_recv_func)(\

 (ep),\

 (size),\

 (lbuf),\

 (cookie),\

 (flags))

#define DAT_EP_POST_RDMA_READ
(ep,size,lbuf,cookie,rbuf,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_post_rdma_read_
func)(\

 (ep),\

 (size),\

 (lbuf),\

 (cookie),\

 (rbuf),\

 (flags))

#define DAT_EP_POST_RDMA_READ_TO_RMR
(ep,lbuf,cookie,rbuf,flags) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_post_rdma_read_to_
rmr_func)(\

 (ep),\

 (lbuf),\

 (cookie),\

 (rbuf),\

 (flags))

#define DAT_EP_POST_RDMA_WRITE
(ep,size,lbuf,cookie,rbuf,flags) \
 Page 434

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_post_rdma_write_
func)(\

 (ep),\

 (size),\

 (lbuf),\

 (cookie),\

 (rbuf),\

 (flags))

#define DAT_EP_GET_STATUS (ep,ep_state,recv_idle,request_
idle) \

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_get_status_func)(\

 (ep),\

 (ep_state),\

 (recv_idle),\

 (request_idle))

#define DAT_EP_FREE (ep)\

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_free_func)(\

 (ep))

#define DAT_EP_RESET (ep)\

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_reset_func)(\

 (ep))

#define DAT_EP_RECV_QUERY (ep,nbuf_alloc,buf_span)\

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_recv_query_func)(\

 (ep),\

 (nbuf_alloc),\

 (buf_span))

#define DAT_EP_SET_WATERMARK (ep,soft_wm,hard_wm)\

 (*DAT_HANDLE_TO_PROVIDER(ep)->ep_set_watermark_
func)(\

 (ep),\

 (soft_wm),\

 (hard_wm))

#define DAT_LMR_QUERY (lmr,mask,param)\

 (*DAT_HANDLE_TO_PROVIDER(lmr)->lmr_query_func)(\
 Page 435

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
 (lmr),\

 (mask),\

 (param))

#define DAT_LMR_FREE (lmr)\

 (*DAT_HANDLE_TO_PROVIDER(lmr)->lmr_free_func)(\

 (lmr))

#define DAT_LMR_SYNC_RDMA_READ (ia,lbuf,size)\

 (*DAT_HANDLE_TO_PROVIDER(ia)->lmr_sync_rdma_read_
func)(\

 (ia),\

 (lbuf),\

 (size))

#define DAT_LMR_SYNC_RDMA_WRITE (ia,lbuf,size)\

 (*DAT_HANDLE_TO_PROVIDER(ia)->lmr_sync_rdma_write_
func)(\

 (ia),\

 (lbuf),\

 (size))

#define DAT_RMR_CREATE (pz,rmr) \

 (*DAT_HANDLE_TO_PROVIDER(pz)->rmr_create_func)(\

 (pz),\

 (rmr))

#define DAT_rmr_create_for_ep (pz,rmr) \

 (*DAT_HANDLE_TO_PROVIDER(pz)->rmr_create_for_ep_
func)(\

 (pz),\

 (rmr))

#define DAT_RMR_QUERY (rmr,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(rmr)->rmr_query_func)(\

 (rmr),\

 (mask),\

 (param))
 Page 436

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

#define DAT_RMR_BIND (rmr,lmr,lmr_triplet,mem_priv,va_
type,ep,cookie,flags,context) \

 (*DAT_HANDLE_TO_PROVIDER(rmr)->rmr_bind_func)(\

 (rmr),\

 (lmr),\

 (lmr_triplet),\

 (mem_priv),\

 (va_type),\

 (ep),\

 (cookie),\

 (flags),\

 (context))

#define DAT_RMR_FREE (rmr)\

 (*DAT_HANDLE_TO_PROVIDER(rmr)->rmr_free_func)(\

 (rmr))

#define DAT_PSP_CREATE (ia,conn_qual,evd,flags,handle) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->psp_create_func)(\

 (ia),\

 (conn_qual),\

 (evd),\

 (flags),\

 (handle))

#define DAT_PSP_CREATE_ANY (ia,conn_qual,evd,flags,handle)
\

 (*DAT_HANDLE_TO_PROVIDER(ia)->psp_create_any_func)(\

 (ia),\

 (conn_qual),\

 (evd),\

 (flags),\

 (handle))

#define DAT_PSP_QUERY (psp,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(psp)->psp_query_func)(\

 (psp),\

 (mask),\

 (param))
 Page 437

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
#define DAT_PSP_FREE (psp)\

 (*DAT_HANDLE_TO_PROVIDER(psp)->psp_free_func)(\

 (psp))

#define DAT_RSP_CREATE (ia,conn_qual,ep,evd,handle) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->rsp_create_func)(\

 (ia),\

 (conn_qual),\

 (ep),\

 (evd),\

 (handle))

#define DAT_RSP_QUERY (rsp,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(rsp)->rsp_query_func)(\

 (rsp),\

 (mask),\

 (param))

#define DAT_RSP_FREE (rsp)\

 (*DAT_HANDLE_TO_PROVIDER(rsp)->rsp_free_func)(\

 (rsp))

#define DAT_CSP_CREATE (ia,comm,addr,ep,evd,handle) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->csp_create_func)(\

 (ia),\

 (comm),\

 (addr),\

 (ep),\

 (evd),\

 (handle))

#define DAT_CSP_QUERY (csp,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(csp)->csp_query_func)(\

 (csp),\

 (mask),\

 (param))

#define DAT_CSP_FREE (csp)\
 Page 438

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

 (*DAT_HANDLE_TO_PROVIDER(csp)->csp_free_func)(\

 (csp))

#define DAT_PZ_CREATE (ia,pz) \

 (*DAT_HANDLE_TO_PROVIDER(ia)->pz_create_func)(\

 (ia),\

 (pz))

#define DAT_PZ_QUERY (pz,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(pz)->pz_query_func)(\

 (pz),\

 (mask),\

 (param))

#define DAT_PZ_FREE (pz) \

 (*DAT_HANDLE_TO_PROVIDER(pz)->pz_free_func)(\

 (pz))

#define DAT_SRQ_CREATE (ia,pz,attr,srq) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_create_func)(\

 (ia),\

 (pz),\

 (attr),\

 (srq))

#define DAT_SRQ_SET_LW (srq,lw) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_set_lw_func)(\

 (srq),\

 (lw))

#define DAT_SRQ_FREE (srq) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_free_func)(\

 (srq))

#define DAT_SRQ_QUERY (srq,mask,param) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_query_func)(\

 (srq),\

 (mask),\

 (param))
 Page 439

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
#define DAT_SRQ_RESIZE (srq,qsize) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_resize_func)(\

 (srq),\

 (qsize))

#define DAT_SRQ_POST_RECV (srq,size,lbuf,cookie) \

 (*DAT_HANDLE_TO_PROVIDER(srq)->srq_post_recv_func)(\

 (srq),\

 (size),\

 (lbuf),\

 (cookie))

#define DAT_IA_HA_RELATED (ia, name, answer) \

(*DAT_HANDLE_TO_PROVIDER(ia)->ia_ha_related) (\

(ia), \

(name), \

(answer))

#ifdef DAT_EXTENSIONS

/* generic extended op */

#define DAT_HANDLE_EXTENDEDOP (handle,op,args) \

(*DAT_HANDLE_TO_PROVIDER(handle)->extendedop_func)
(\

(handle),

(op),

(args))

#endif

/**

 * FUNCTION PROTOTYPES

*****/

typedef DAT_RETURN (*DAT_IA_OPEN_FUNC) (

IN const DAT_NAME_PTR,/* provider */

IN DAT_COUNT,/* asynch_evd_min_qlen */

INOUT DAT_EVD_HANDLE *,/* asynch_evd_handle */
 Page 440

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

OUT DAT_IA_HANDLE *);/* ia_handle */

typedef DAT_RETURN (*DAT_IA_OPENV_FUNC) (

IN const DAT_NAME_PTR,/* provider */

IN DAT_COUNT,/* asynch_evd_min_qlen */

INOUT DAT_EVD_HANDLE *,/* asynch_evd_handle */

OUT DAT_IA_HANDLE *,/* ia_handle */

IN DAT_UINT32,/* dat major version number */

IN DAT_UINT32,/* dat minor version number */

IN DAT_BOOLEAN);/* dat thread safety */

typedef DAT_RETURN (*DAT_IA_CLOSE_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

IN DAT_CLOSE_FLAGS);/* close_flags */

typedef DAT_RETURN (*DAT_IA_QUERY_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

OUT DAT_EVD_HANDLE *,/* async_evd_handle */

IN DAT_IA_ATTR_MASK,/* ia_attr_mask */

OUT DAT_IA_ATTR *,/* ia_attr */

IN DAT_PROVIDER_ATTR_MASK, /* provider_attr_mask */

OUT DAT_PROVIDER_ATTR *);/* provider_attr */

/* helper functions */

typedef DAT_RETURN (*DAT_SET_CONSUMER_CONTEXT_FUNC) (

IN DAT_HANDLE,/* dat_handle */

IN DAT_CONTEXT);/* context */

typedef DAT_RETURN (*DAT_GET_CONSUMER_CONTEXT_FUNC) (

IN DAT_HANDLE,/* dat_handle */

OUT DAT_CONTEXT *);/* context */

typedef DAT_RETURN (*DAT_GET_HANDLE_TYPE_FUNC) (

IN DAT_HANDLE, /* dat_handle */

OUT DAT_HANDLE_TYPE *); /* dat_handle_type */

/* CR functions */
 Page 441

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
typedef DAT_RETURN (*DAT_CR_QUERY_FUNC) (

IN DAT_CR_HANDLE,/* cr_handle */

IN DAT_CR_PARAM_MASK,/* cr_param_mask */

OUT DAT_CR_PARAM *);/* cr_param */

typedef DAT_RETURN (*DAT_CR_ACCEPT_FUNC) (

IN DAT_CR_HANDLE,/* cr_handle */

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* private_data_size */

IN const DAT_PVOID);/* private_data */

typedef DAT_RETURN (*DAT_CR_REJECT_FUNC) (

IN DAT_CR_HANDLE);/* cr_handle */

/* For DAT-1.1 this function is defined for both uDAPL and
kDAPL.

 * For DAT-1.0 it was only defined for uDAPL.

 */

typedef DAT_RETURN (*DAT_CR_HANDOFF_FUNC) (

 IN DAT_CR_HANDLE,/* cr_handle */

 IN DAT_CONN_QUAL);/* handoff */

/* EVD functions */

typedef DAT_RETURN (*DAT_EVD_RESIZE_FUNC) (

IN DAT_EVD_HANDLE, /* evd_handle */

IN DAT_COUNT);/* evd_min_qlen */

typedef DAT_RETURN (*DAT_EVD_POST_SE_FUNC) (

IN DAT_EVD_HANDLE, /* evd_handle */

IN const DAT_EVENT *); /* event */

typedef DAT_RETURN (*DAT_EVD_DEQUEUE_FUNC) (

IN DAT_EVD_HANDLE,/* evd_handle */

OUT DAT_EVENT *);/* event */

typedef DAT_RETURN (*DAT_EVD_FREE_FUNC) (

IN DAT_EVD_HANDLE);/* evd_handle */
 Page 442

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

typedef DAT_RETURN (*DAT_EVD_QUERY_FUNC) (

IN DAT_EVD_HANDLE,/* evd_handle */

IN DAT_EVD_PARAM_MASK,/* evd_param_mask */

OUT DAT_EVD_PARAM *);/* evd_param */

/* EP functions */

typedef DAT_RETURN (*DAT_EP_CREATE_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

IN DAT_PZ_HANDLE,/* pz_handle */

IN DAT_EVD_HANDLE,/* recv_completion_evd_handle */

IN DAT_EVD_HANDLE,/* request_completion_evd_handle
*/

IN DAT_EVD_HANDLE,/* connect_evd_handle */

IN const DAT_EP_ATTR *,/* ep_attributes */

OUT DAT_EP_HANDLE *);/* ep_handle */

typedef DAT_RETURN (*DAT_EP_CREATE_WITH_SRQ_FUNC)(

 IN DAT_IA_HANDLE, /* ia_handle
*/

 IN DAT_PZ_HANDLE, /* pz_handle
*/

 IN DAT_EVD_HANDLE, /* recv_completion_
evd_handle */

 IN DAT_EVD_HANDLE, /* request_
completion_evd_handle */

 IN DAT_EVD_HANDLE, /* connect_evd_
handle */

 IN DAT_SRQ_HANDLE, /* srq_handle
*/

 IN const DAT_EP_ATTR *, /* ep_at-
tributes */

 OUT DAT_EP_HANDLE *);/* ep_handle */

typedef DAT_RETURN (*DAT_EP_QUERY_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_EP_PARAM_MASK,/* ep_param_mask */

OUT DAT_EP_PARAM *);/* ep_param */

typedef DAT_RETURN (*DAT_EP_MODIFY_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */
 Page 443

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
IN DAT_EP_PARAM_MASK,/* ep_param_mask */

IN const DAT_EP_PARAM *); /* ep_param */

typedef DAT_RETURN (*DAT_EP_CONNECT_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_IA_ADDRESS_PTR,/* remote_ia_address */

IN DAT_CONN_QUAL,/* remote_conn_qual */

IN DAT_TIMEOUT,/* timeout */

IN DAT_COUNT,/* private_data_size */

IN const DAT_PVOID,/* private_data */

IN DAT_QOS,/* quality_of_service */

IN DAT_CONNECT_FLAGS);/* connect_flags */

typedef DAT_RETURN (*DAT_EP_DUP_CONNECT_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_EP_HANDLE,/* ep_dup_handle */

IN DAT_TIMEOUT,/* timeout */

IN DAT_COUNT,/* private_data_size */

IN const DAT_PVOID,/* private_data */

IN DAT_QOS);/* quality_of_service */

typedef DAT_RETURN (*DAT_EP_DISCONNECT_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_CLOSE_FLAGS);/* close_flags */

typedef DAT_RETURN (*DAT_EP_POST_SEND_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* num_segments */

IN DAT_LMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN DAT_COMPLETION_FLAGS); /* completion_flags */

typedef DAT_RETURN (*DAT_EP_POST_SEND_FUNC_WITH_INVALIDATE)
(

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* num_segments */

IN DAT_LMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN DAT_COMPLETION_FLAGS, /* completion_flags */
 Page 444

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

IN DAT_BOOLEAN, /* invalidate_flag */

IN DAT_RMR_CONTEXT); /* RMR context */

typedef DAT_RETURN (*DAT_EP_POST_RECV_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* num_segments */

IN DAT_LMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN DAT_COMPLETION_FLAGS); /* completion_flags */

typedef DAT_RETURN (*DAT_EP_POST_RDMA_READ_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* num_segments */

IN DAT_LMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN const DAT_RMR_TRIPLET *,/* remote_iov */

IN DAT_COMPLETION_FLAGS); /* completion_flags */

typedef DAT_RETURN (*DAT_EP_POST_RDMA_READ_TO_RMR_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN const DAT_RMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN const DAT_RMR_TRIPLET *,/* remote_iov */

IN DAT_COMPLETION_FLAGS); /* completion_flags */

typedef DAT_RETURN (*DAT_EP_POST_RDMA_WRITE_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_COUNT,/* num_segments */

IN DAT_LMR_TRIPLET *,/* local_iov */

IN DAT_DTO_COOKIE,/* user_cookie */

IN const DAT_RMR_TRIPLET *, /* remote_iov */

IN DAT_COMPLETION_FLAGS); /* completion_flags */

typedef DAT_RETURN (*DAT_EP_GET_STATUS_FUNC) (

IN DAT_EP_HANDLE,/* ep_handle */

OUT DAT_EP_STATE *,/* ep_state */

OUT DAT_BOOLEAN *,/* recv_idle */

OUT DAT_BOOLEAN *);/* request_idle */
 Page 445

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
typedef DAT_RETURN (*DAT_EP_FREE_FUNC) (

IN DAT_EP_HANDLE);/* ep_handle */

typedef DAT_RETURN (*DAT_EP_RESET_FUNC) (

IN DAT_EP_HANDLE);/* ep_handle */

typedef DAT_RETURN (*DAT_EP_RECV_QUERY_FUNC)(

IN DAT_EP_HANDLE, /* ep_handle */

OUT DAT_COUNT *, /* nbufs_allocated*/

OUT DAT_COUNT *); /* bufs_alloc_span*/

typedef DAT_RETURN (*DAT_EP_SET_WATERMARK_FUNC)(

IN DAT_EP_HANDLE, /* ep_handle */

IN DAT_COUNT, /* ep_soft_high_watermark*/

IN DAT_COUNT); /* ep_hard_high_watermarkI*/

/* LMR functions */

typedef DAT_RETURN (*DAT_LMR_FREE_FUNC) (

IN DAT_LMR_HANDLE);/* lmr_handle */

typedef DAT_RETURN (*DAT_LMR_QUERY_FUNC) (

IN DAT_LMR_HANDLE,/* lmr_handle */

IN DAT_LMR_PARAM_MASK,/* lmr_param_mask */

OUT DAT_LMR_PARAM *);/* lmr_param */

typedef DAT_RETURN (*DAT_LMR_SYNC_RDMA_READ_FUNC)(

 IN DAT_IA_HANDLE, /* ia_handle
*/

IN const DAT_LMR_TRIPLET *, /* local segments */

IN DAT_VLEN); /* num_segments */

typedef DAT_RETURN (*DAT_LMR_SYNC_RDMA_WRITE_FUNC)(

 IN DAT_IA_HANDLE, /* ia_handle
*/

IN const DAT_LMR_TRIPLET *, /* local segments */

IN DAT_VLEN); /* num_segments */

/* RMR functions */
 Page 446

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

typedef DAT_RETURN (*DAT_RMR_CREATE_FUNC) (

IN DAT_PZ_HANDLE,/* pz_handle */

OUT DAT_RMR_HANDLE *);/* rmr_handle */

typedef DAT_RETURN (*DAT_RMR_CREATE_FOR_EP_FUNC) (

IN DAT_PZ_HANDLE, /* pz_handle */

OUT DAT_RMR_HANDLE *); /* rmr_handle */

typedef DAT_RETURN (*DAT_RMR_QUERY_FUNC) (

IN DAT_RMR_HANDLE,/* rmr_handle */

IN DAT_RMR_PARAM_MASK,/* rmr_param_mask */

OUT DAT_RMR_PARAM *);/* rmr_param */

typedef DAT_RETURN (*DAT_RMR_BIND_FUNC) (

IN DAT_RMR_HANDLE,/* rmr_handle */

IN DAT_LMR_HANDLE,/* lmr_handle */

IN const DAT_LMR_TRIPLET *, /* lmr_triplet */

IN DAT_MEM_PRIV_FLAGS,/* mem_priv */

IN DAT_VA_TYPE, /* va_type */

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_RMR_COOKIE,/* user_cookie */

IN DAT_COMPLETION_FLAGS,/* completion_flags */

OUT DAT_RMR_CONTEXT *);/* context */

typedef DAT_RETURN (*DAT_RMR_FREE_FUNC) (

IN DAT_RMR_HANDLE);/* rmr_handle */

/* PSP functions */

typedef DAT_RETURN (*DAT_PSP_CREATE_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

IN DAT_CONN_QUAL,/* conn_qual */

IN DAT_EVD_HANDLE,/* evd_handle */

IN DAT_PSP_FLAGS,/* psp_flags */

OUT DAT_PSP_HANDLE *);/* psp_handle */

typedef DAT_RETURN (*DAT_PSP_CREATE_ANY_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */
 Page 447

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
OUT DAT_CONN_QUAL *,/* conn_qual */

IN DAT_EVD_HANDLE,/* evd_handle */

IN DAT_PSP_FLAGS,/* psp_flags */

OUT DAT_PSP_HANDLE *);/* psp_handle */

typedef DAT_RETURN (*DAT_PSP_QUERY_FUNC) (

IN DAT_PSP_HANDLE, /* psp_handle */

IN DAT_PSP_PARAM_MASK, /* psp_param_mask */

OUT DAT_PSP_PARAM *); /* psp_param */

typedef DAT_RETURN (*DAT_PSP_FREE_FUNC) (

IN DAT_PSP_HANDLE);/* psp_handle */

/* RSP functions */

typedef DAT_RETURN (*DAT_RSP_CREATE_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

IN DAT_CONN_QUAL,/* conn_qual */

IN DAT_EP_HANDLE,/* ep_handle */

IN DAT_EVD_HANDLE,/* evd_handle */

OUT DAT_RSP_HANDLE *);/* rsp_handle */

typedef DAT_RETURN (*DAT_RSP_QUERY_FUNC) (

IN DAT_RSP_HANDLE, /* rsp_handle */

IN DAT_RSP_PARAM_MASK, /* rsp_param_mask */

OUT DAT_RSP_PARAM *); /* rsp_param */

typedef DAT_RETURN (*DAT_RSP_FREE_FUNC) (

IN DAT_RSP_HANDLE);/* rsp_handle */

/* CSP functions functions - DAT 2.0 */

typedef DAT_RETURN (*DAT_CSP_CREATE_FUNC) (

 IN DAT_IA_HANDLE, /* ia_handle */

 IN DAT_COMM *, /* communicator */

 IN DAT_IA_ADDRESS, /* address */

 IN DAT_EVD_HANDLE, /* evd_handle */

 OUT DAT_CSP_HANDLE *);/* csp_handle */
 Page 448

uDAPL Document Revision: April 20, 2006
VERSION 2.0

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

1

2

3

4

5

6

7

8

9

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

typedef DAT_RETURN (*DAT_CSP_QUERY_FUNC) (

 IN DAT_CSP_HANDLE, /* csp_handle */

 IN DAT_CSP_PARAM_MASK,/* csp_param_mask
*/

 OUT DAT_CSP_PARAM *); /* csp_param */

typedef DAT_RETURN (*DAT_CSP_FREE_FUNC) (

 IN DAT_CSP_HANDLE); /* csp_handle */

/* PZ functions */

typedef DAT_RETURN (*DAT_PZ_CREATE_FUNC) (

IN DAT_IA_HANDLE,/* ia_handle */

OUT DAT_PZ_HANDLE *);/* pz_handle */

typedef DAT_RETURN (*DAT_PZ_QUERY_FUNC) (

IN DAT_PZ_HANDLE,/* pz_handle */

IN DAT_PZ_PARAM_MASK,/* pz_param_mask */

OUT DAT_PZ_PARAM *);/* pz_param */

typedef DAT_RETURN (*DAT_PZ_FREE_FUNC) (

IN DAT_PZ_HANDLE);/* pz_handle */

/* SRQ functions */

typedef DAT_RETURN (*DAT_SRQ_CREATE_FUNC)(

IN DAT_IA_HANDLE, /* ia_handle */

IN DAT_PZ_HANDLE, /* pz_handle */

IN DAT_SRQ_ATTR *, /* srq_attributes */

OUT DAT_SRQ_HANDLE *); /* srq_handle */

typedef DAT_RETURN (*DAT_SRQ_SET_LW_FUNC)(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT); /* srq_low_watermark*/

typedef DAT_RETURN (*DAT_SRQ_FREE_FUNC)(

IN DAT_SRQ_HANDLE *); /* srq_handle */

typedef DAT_RETURN (*DAT_SRQ_QUERY_FUNC)(
 Page 449

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

uDAPL Document Revision: April 20, 2006
VERSION 2.0
IN DAT_SRQ_HANDLE , /* srq_handle */

IN DAT_SRQ_PARAM_MASK, /* srq_param_mask */

OUT DAT_SRQ_PARAM *); /* srq_param*/

typedef DAT_RETURN (*DAT_SRQ_RESIZE_FUNC)(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT); /* srq_queue_length*/

typedef DAT_RETURN (*DAT_SRQ_POST_RECV_FUNC)(

IN DAT_SRQ_HANDLE, /* srq_handle */

IN DAT_COUNT, /* num_segments */

IN DAT_LMR_TRIPLET *, /* local_iov */

IN DAT_DTO_COOKIE); /* user_cookie */

typedef DAT_RETURN (*DAT_IA_HA_RELATED) (

IN DAT_IA_HANDLE, /* ia_handle */

IN const DAT_NAME_PTR, /* ia name */

OUT DAT_BOOLEAN*); /* answer */

#ifdef DAT_EXTENSION

typedef int DAT_EXTENDED_OP;

#include <stdarg.h>

typedef DAT_RETURN (*DAT_HANDLE_EXTENDEDOP_FUNC)(

IN DAT_HANDLE, /* handle */

IN DAT_EXTENDED_OP, /* extended op */

IN va_list); /* arguments list */

#endif /* DAT_EXTENSION */

#endif /* _DAT_REDIRECTION_H_ */
 Page 450

	Chapter 1: Introduction
	Chapter 2: Terminology
	Chapter 3: Model
	Chapter 4: Transport Requirements
	Chapter 5: User-Level API Requirements
	5.1 Local Resource Model
	5.2 Connection Management
	5.3 Data Transfer Operations Initiation
	5.4 Data Transfer Operation Completions
	5.5 Memory Management
	5.6 Error Detection and Notification
	5.7 Event Model
	5.8 Name Service
	5.9 High Availability (HA)

	Chapter 6: uDAPL-2.0 API
	6.1 API Conventions
	6.1.1 Namespace
	6.1.2 Memory Space
	6.1.3 Thread, Signal and Exception Handler Safety and Blocking Definitions
	6.1.3.1 Thread Safety Definitions
	6.1.3.2 Signal and Exception Handler Safety Definitions
	6.1.3.3 Design Principles
	6.1.3.4 Object Destruction
	6.1.3.5 Safety Specification

	6.2 Local Resources Management
	6.2.1 Interface Adapter
	6.2.1.1 DAT_IA_Open
	6.2.1.2 DAT_IA_Close
	6.2.1.3 Interface Adapter Attributes
	6.2.1.4 DAPL Provider Attributes
	6.2.1.5 DAT_IA_Query

	6.2.2 Consumer Context
	6.2.2.1 DAT_Set_Consumer_Context
	6.2.2.2 DAT_Get_Consumer_Context
	6.2.2.3 DAT_Get_Handle_Type

	6.3 Event Management
	6.3.1 Event Model
	6.3.1.1 uDAPL versus kDAPL Event Dispatchers

	6.3.2 Consumer Notification Object
	6.3.2.1 DAT_CNO_Create
	6.3.2.2 DAT_CNO_Free
	6.3.2.3 DAT_CNO_Wait
	6.3.2.4 DAT_CNO_Modify_Agent
	6.3.2.5 DAT_CNO_Query

	6.3.3 OS Wait Proxy Agent
	6.3.4 Event Dispatcher
	6.3.4.1 DAT_EVD_Create
	6.3.4.2 DAT_EVD_Free
	6.3.4.3 DAT_EVD_Query
	6.3.4.4 DAT_EVD_Modify_CNO
	6.3.4.5 DAT_EVD_Enable
	6.3.4.6 DAT_EVD_Disable
	6.3.4.7 DAT_EVD_Set_Unwaitable
	6.3.4.8 DAT_EVD_Clear_Unwaitable
	6.3.4.9 DAT_EVD_Resize
	6.3.4.10 DAT_EVD_Wait
	6.3.4.11 DAT_EVD_Dequeue
	6.3.4.12 DAT_EVD_Post_SE

	6.4 Connection Management
	6.4.1 Interface Adapter Address
	6.4.1.1 Port

	6.4.2 Connection Qualifier
	6.4.3 Communicator
	6.4.4 Service Point
	6.4.4.1 Public Service Point
	6.4.4.2 Common Service Point
	6.4.4.3 Reserved Service Point

	6.4.5 Connection Request
	6.4.5.1 DAT_CR_Query
	6.4.5.2 DAT_CR_Accept
	6.4.5.3 DAT_CR_Reject
	6.4.5.4 DAT_CR_Handoff

	6.5 Shared receive Queue
	6.5.1 DAT_SRQ_Create
	6.5.1.1 Usage
	6.5.1.2 Rationale
	6.5.1.3 Model Implications

	6.5.2 Shared Receive Queue States
	6.5.2.1 Model Implication

	6.5.3 Shared Receive Queue Attributes
	6.5.3.1 Usage
	6.5.3.2 Rationale
	6.5.3.3 Model Implication

	6.5.4 DAT_SRQ_Set_LW
	6.5.4.1 Usage
	6.5.4.2 Rationale
	6.5.4.3 Model Implications

	6.5.5 DAT_SRQ_Free
	6.5.5.1 Usage
	6.5.5.2 Rationale
	6.5.5.3 Model Implications

	6.5.6 DAT_SRQ_Query
	6.5.6.1 Usage
	6.5.6.2 Rationale
	6.5.6.3 Model Implications

	6.5.7 DAT_SRQ_Resize
	6.5.7.1 Usage
	6.5.7.2 Rationale
	6.5.7.3 Model Implications

	6.5.8 DAT_SRQ_Post_Recv
	6.5.8.1 Usage
	6.5.8.2 Rationale
	6.5.8.3 Model Implications

	6.6 Endpoint
	6.6.1 Endpoint Lifecycle
	6.6.1.1 Advice to IB Implementors

	6.6.2 Deferred Configuration Endpoint
	6.6.3 Connection Establishment Models
	6.6.3.1 Using a Public Service Point with Consumer-Allocated Endpoints
	6.6.3.2 Using a Public Service Point with Provider-Allocated Endpoints
	6.6.3.3 Using a Reserved Service Point
	6.6.3.4 Using a Common Service Point
	6.6.3.5 Mixing Connection Models

	6.6.4 DAT_EP_Create
	6.6.4.1 Usage
	6.6.4.2 Rationale
	6.6.4.3 Model Implications

	6.6.5 DAT_EP_Create_With_SRQ
	6.6.5.1 Usage
	6.6.5.2 Rationale
	6.6.5.3 Model Implications

	6.6.6 Endpoint Attributes
	6.6.6.1 Usage
	6.6.6.2 Rationale
	6.6.6.3 Model Implication

	6.6.7 Endpoint States
	6.6.7.1 Usage
	6.6.7.2 Rationale
	6.6.7.3 Model Implications

	6.6.8 DAT_EP_Free
	6.6.8.1 Usage
	6.6.8.2 Rationale
	6.6.8.3 Model Implications

	6.6.9 DAT_EP_Get_Status
	6.6.9.1 Usage
	6.6.9.2 Rationale
	6.6.9.3 Model Implications

	6.6.10 DAT_EP_Query
	6.6.10.1 Usage
	6.6.10.2 Rationale
	6.6.10.3 Model Implications

	6.6.11 DAT_EP_Recv_Query
	6.6.11.1 Usage
	6.6.11.2 Rationale
	6.6.11.3 Model Implications

	6.6.12 DAT_EP_Modify
	6.6.12.1 Usage
	6.6.12.2 Rationale
	6.6.12.3 Model Implications

	6.6.13 DAT_EP_Set_Watermark
	6.6.13.1 Usage
	6.6.13.2 Rationale
	6.6.13.3 Model Implications

	6.6.14 DAT_EP_Connect
	6.6.14.1 Usage
	6.6.14.2 Rationale
	6.6.14.3 Model Implications

	6.6.15 DAT_EP_Common_Connect
	6.6.15.1 Usage
	6.6.15.2 Rationale
	6.6.15.3 Model Implications

	6.6.16 DAT_EP_Dup_Connect
	6.6.16.1 Usage
	6.6.16.2 Rationale
	6.6.16.3 Model Implications

	6.6.17 DAT_EP_Disconnect
	6.6.17.1 Usage
	6.6.17.2 Rationale
	6.6.17.3 Model Implications

	6.6.18 DAT_EP_Reset
	6.6.18.1 Usage
	6.6.18.2 Rationale
	6.6.18.3 Model Implications

	6.6.19 Data Transfer Operations
	6.6.19.1 Usage

	6.6.20 DAT_EP_Post_Send
	6.6.20.1 Usage
	6.6.20.2 Rationale
	6.6.20.3 Model Implications

	6.6.21 DAT_EP_Post_Send_with_Invalidate
	6.6.22 DAT_EP_Post_Recv
	6.6.22.1 Usage
	6.6.22.2 Rationale
	6.6.22.3 Model Implications

	6.6.23 DAT_EP_Post_RDMA_Read
	6.6.23.1 Usage
	6.6.23.2 Rationale
	6.6.23.3 Model Implications

	6.6.24 DAT_EP_Post_RDMA_Read_to_RMR
	6.6.24.1 Usage
	6.6.24.2 Rationale
	6.6.24.3 Model Implications

	6.6.25 DAT_EP_Post_RDMA_Write
	6.6.25.1 Usage
	6.6.25.2 Rationale
	6.6.25.3 Model Implications

	6.7 Memory Management
	6.7.1 Protection Zone
	6.7.1.1 DAT_PZ_Create
	6.7.1.2 DAT_PZ_Free
	6.7.1.3 DAT_PZ_Query

	6.7.2 Local Memory Region
	6.7.2.1 DAT_LMR_Create
	6.7.2.2 DAT_LMR_Free
	6.7.2.3 DAT_LMR_Query

	6.7.3 Remote Memory Region
	6.7.3.1 DAT_RMR_Create
	6.7.3.2 DAT_RMR_Create_For_Ep
	6.7.3.3 DAT_RMR_Free
	6.7.3.4 DAT_RMR_Query
	6.7.3.5 DAT_RMR_Bind

	6.7.4 Non-Coherent Memory Support
	6.7.4.1 DAT_LMR_Sync_RDMA_Read
	6.7.4.2 DAT_LMR_Sync_RDMA_Write

	6.8 Completions
	6.8.1 Completion Events and Posting Interactions
	6.8.2 Completion Status
	6.8.2.1 Usage
	6.8.2.2 Completion Status Transport Mappings

	6.9 Operating System Specific Notes
	6.9.1 Unix® Operating System Specific Notes
	6.9.2 Windows Operating System Specific Notes

	Chapter 7: Error Handling
	7.1 DAT_STRERROR
	7.1.1 Usage
	7.1.2 Rationale
	7.1.3 Model Implications

	Chapter 8: uDAPL Provider Management
	8.1 Overview
	8.1.1 Interface Adapter
	8.1.2 Provider Multiple Libraries
	8.1.3 Provider Polymorphism
	8.1.4 Registry Implementation

	8.2 Registry APIs
	8.2.1 DAT_Provider Structure
	8.2.2 Consumer Exposed APIs
	8.2.2.1 DAT_Registry_List_Providers
	8.2.2.2 DAT_Registry_Providers_Related

	8.2.3 Consumer Nonexposed APIs
	8.2.3.1 DAT_Registry_Add_Provider
	8.2.3.2 DAT_Registry_Remove_Provider

	8.2.4 Provider-Supplied APIs
	8.2.4.1 DAT_Provider_Init
	8.2.4.2 DAT_Provider_Fini

	8.3 Dat.h API Version and Thread Safety Auto Support
	8.3.1 Compile Time API Version Support
	8.3.2 Thread Safety Support
	8.3.3 Version Support for IA open

	8.4 Provider Registry Guidelines
	8.4.1 Provider Installation Advice
	8.4.2 Load on Demand
	8.4.3 Dynamic Provider Registration
	8.4.4 Static Registry
	8.4.4.1 Static Registry Entry Contents
	8.4.4.2 Static Registry Editing

	8.4.5 Unix and Windows Static Registries
	8.4.6 Other Static Registry Formats
	8.4.7 RedHat RPM Installation Advice
	8.4.7.1 General Installation
	8.4.7.2 Editing dat.conf File
	8.4.7.3 Interaction with System Registry
	8.4.7.4 Setting the Default Provider
	8.4.7.5 Installation of Multiple Versions of the Provider

	Chapter 9: DAT Name Service
	9.1 Advice to Consumers
	9.1.1 Find IA for a local IA address
	9.1.2 Find IA for a local IA address
	9.1.3 Find IA to reach remote IA address

	Appendix A: uDAPL-2.0 Headers
	A.1 udat.h
	A.2 udat_config.h
	A.3 dat_platform_specific.h
	A.4 dat.h
	A.5 Generic Status Codes
	A.6 udat_vendor_specific.h
	A.7 dat_vendor_specific.h

	Appendix B: uDAPL-2.0 Registration Headers
	B.1 DAT Registry
	B.2 udat_redirection.h
	B.3 dat_redirection.h

