Design of changes to the opensm lash routing engine to support optimal deadlock free routing of a class of Cartesian mesh fabrics.

Introduction

This work has been done as part of the effort to design, build and deploy a large cluster based on a three dimensional toroidal mesh InfiniBand fabric. Currently there are no tools to automatically generate deadlock free routing for systems of this type other than the lash routing engine in opensm.
The opensm subnet manager delivered as part of the Open Fabrics Alliance’s OFED stack supports several routing engines. One of these, lash, is designed to provide deadlock free routes for general fabric topologies but it can fail if the fabric is sufficiently complex which can easily occur.
The work described here is an attempt to add to lash tools to automatically detect when an InfiniBand fabric is, in some sense to be defined below, a regular mesh and remap the switch to switch links in an optimal dimension order. This will allow the lash routing engine to find a route with the minimal number of virtual channels.
Lash background

Lash attempts to use virtual channels (VLs in IB terminology) to find a set of point to point routes between fabric endpoints that will not cause deadlocks. For each pair of switch nodes it chooses a shortest path route and then checks to see if, for some VL, that route together with existing routes using that VL are free of routing loops. If so, it adds that new route to the routes for that VL. Otherwise, if none of the existing VLs are compatible, it allocates a new VL. If the number of VLs exceeds the capabilities of the hardware the algorithm fails.

All routes between HCAs (other than trivial back to back links) involve a link from each HCA to a unique adjacent switch. Thus all shortest routes reduce to finding shortest routes between switches.

Lash selects shortest paths to each switch by constructing a spanning tree rooted at the switch that reaches each starting switch in a minimum number of hops. The tree is constructed in a breadth first walk of the mesh that gives priority to switch output ports in the predetermined order that they are presented to the algorithm by the rest of the opensm framework. By default that order is determined by port number. If the ports of the switch were assigned in dimension order, i.e. cabling is assigned to switch ports based on x,y,z coordinates in a regular fashion, then the default behavior of opensm with lash would be to use the same shortest paths as the DOR algorithm which are known to be better from a deadlock point of view.
In fact for open meshes DOR is deadlock free, but for tori there remain some routing loops that must be dealt with by using virtual channels. But, if arbitrary shortest paths are used even an open mesh can have routing loops and a torus can have more routing loops than the minimum possible number.
The work described here is attempting to allow the freedom to connect switches with arbitrary port assignments at each switch without introducing unnecessary routing loops.

Handling multi-links
This discussion requires a refinement. We need to handle the case where more than one port is connected between a pair of adjacent switches. Because lash as currently implemented in opensm builds a single spanning tree for each destination switch it will never take advantage of balancing the load over other redundant links. The approach taken here is to change lash to collect all the physical links between two switches into a single object that represents a logical link between them. It is these logical links that are used to find the shortest paths. The same discussion applies except that it is for logical links instead of physical links. When the routing table is finally generated the equivalent physical links are used in round robin order to balance the load across them.

From the point of view of deadlock avoidance the behavior of multiple links with a static round robin load balancing scheme is certainly no worse than if a single link were present. But, it might be better in some cases. To be very specific, if we have a single IB 4X link with today’s switch ASICs there are 8 data VLs or 8 sets of independently flow controlled input buffers for that link. It is these VLs that are used by lash as ‘virtual channels’ to avoid circular routing loops. If, on the other hand, we have 3 4X links then there are 24 independent sets of input buffers. These resources could be managed to deal with deadlock avoidance of topologically more complex fabrics.

There is a difference between using the VLs on a single link and over multiple links. In the first case all of the available bandwidth is potentially available to each VL. In the second case only a fraction of the total bandwidth is available to each VL. An algorithm to assign different paths to different VLs would also have to be responsible for load balancing the traffic as well as avoiding deadlocks.

In the design discussed here we separate these issues and ignore the possibility that we could have more virtual circuits. This makes the implementation simpler and solves the 3-torus problem which is the goal.
Local geometry
We need a way for lash to automatically reorder the logical links connected to each switch so that the links are in dimension order.

This should work regardless of how the set of switches are wired as long as the fabric is topologically a torus. Very importantly, it should also 'mostly work' if the fabric is 'mostly a torus'. I.e. it should still work if there are defects in an otherwise perfectly symmetric torus.

Consider the following figure which shows a small patch of a mesh centered at switch S0.
 +---+ +---+ +---+

 | S +---+ S2+---+ S +

 +---+ +---+ +---+

 | | |

 +---+ +---+ +---+

 | S1+---+ S0+---+ S3+

 +---+ +---+ +---+

 | | |

 +---+ +---+ +---+

 | S +---+ S4+---+ S +

 +---+ +---+ +---+

This is a 2-D example because it is easier to visualize but the same discussion will apply to a 3-D mesh. S0 as shown has 4 neighbors S1, S2, S3 and S4. We imagine that the labels are related to the order of the links out of S0 which in general could be anything depending on how the switches are wired. The example order picked here is not dimension ordered.

Without the picture we might not know what the geometry is but we can discover something about it by computing the matrix of distances between the neighbors of S0. We leave S0 out for this calculation so we can ‘feel’ the rest of the mesh around us.
 +---+ +---+ +---+

 | S +---+ S2+---+ S +

 +---+ +---+ +---+

 | | |

 +---+ +---+

 | S1+--- ---+ S3+

 +---+ +---+

 | | |

 +---+ +---+ +---+

 | S +---+ S4+---+ S +

 +---+ +---+ +---+

We see that S1 is 2 hops from S2 and S4 but S1 is 4 hops from S3 and similar things. From this we can actually infer that S0 is part of a 2-D mesh and that S1,S3 and S2,S4 represent perpendicular axes. For a large enough mesh, the fabric is a 2-D torus if and only if all of the switches have the distances between the adjacent switches as just described up to a permutation of the labels. In other words if d(ij) is the distance in hops between the ith and jth adjacent switch then
 | 0 2 4 2 | | 0 2 2 4 | | 0 4 2 2 |
 | | | | | |
 | 2 0 2 4 | | 2 0 4 2 | | 4 0 2 2 |
d = | | or | | or | |
 ij | 4 2 0 2 | | 2 4 0 2 | | 2 2 0 4 |
 | | | | | |
 | 2 4 2 0 | | 4 2 2 0 | | 2 2 4 0 |

If we collect the same local distance information for all the switches in the fabric and classify them into equivalent sets we will find that all switches are in one set if the fabric is a pure torus, or that most of the switches will be in this set if the fabric is mostly a 2-D mesh. This might include a 2-D torus with a few holes, extra cables or a few irregular nodes hanging off the side or a 2-D rectangle where the interior is larger than the boundary. All of this applies to meshes in other than 2 dimensions.

Invariants

Since any permutation of the switch ports gives an equivalent fabric we need a way to characterize the switch nodes that is invariant under these permutations. This invariant has to have enough information to keep different ‘geometries’ different. We have selected the following
p(x) = det(d – xI)

P(x) is the determinant of the matrix formed by subtracting x times the unit matrix from the distance matrix we discussed above. If a switch has n adjacent switches then p(x) will be a polynomial of degree n. It is easy to see that p(x) is invariant under permutations of the ports. We can call this the characteristics polynomial of d.
The distance matrix is the same for all switches in a regular mesh when the fabric is large enough. For boundary cases where the mesh is small the shortest path between two neighbors may be to wrap around the torus. In this case the ‘4’ above might become a 3 or a 2 or a 1 or if the size of a torus along one axis is 2 the two points may even collapse into the same point. If the size is 6 or larger the shortest path will be 4.
By enumeration it can be shown that all regular 2-D tori up to 6x6 and above and all 3-D tori up to 6x6x6 and above with regular boundary conditions give unique characteristic polynomials as long as the meshes are topologically distinct. Examples that are not distinct include Nx4 and Nx2x2 which are equivalent and have the same polynomials. (See Appendix below.)
(We have not investigated tori with sheared boundary conditions. I.e. at the boundary in one dimension the other dimensions are shifted by a constant amount. While these are sometimes used in numerical modeling they are not common in computer networks.)

Now we can state the algorithm that we follow so far as:
1. For each switch compute the matrix of shortest paths between adjacent switches that do not go through the given switch.
2. Compute the polynomial p(x) that is the determinant of the matrix minus x times the unit matrix of the same rank.

3. For each switch compare the characteristic polynomial to the known polynomials of all regular 2-D and 3-D meshes.

4. For each switch compare the characteristic polynomial to the polynomials of the previously visited switches and keep a histogram of the number of each type. Then find the largest group of switches.

5. If the largest group is one of the known types then proceed to the next step. Otherwise let lash proceed on the original problem.
Global geometry

Once we have identified the dominant set of switch nodes that are 'mesh like' in the sense defined above the next problem is to build a coordinate system for the fabric. The switches might form a pure torus of some size but they could all be wired differently. We must build a geometry for the mesh. We do this by arbitrarily picking axes for one switch selected from the group and then by letting that induce the axes of the links of the adjacent switches until as many links as possible are assigned axes. If the fabric is a pure n-torus then all the links will have been assigned. If the fabric has a few missing links this does not necessarily cause a problem if it remains ‘connected enough’. If there are a few 'extra' links we just leave them alone as non-dimensional links.

In some cases these decorations may be sufficiently tree like to not cause any additional routing loops and lash will be able to route the fabric with the minimum number of VLs required for the regular torus. In other cases more VLs may be required.
Leaving out the details (and the case where one of the axes has length 2) the algorithm to determine the axes of all the switches is based on the following steps:
1. If a switch link has axis A then the ‘opposite’ link has axis –A (where A can be +X, -X, +Y, etc.) (Here opposite means the unique direction that has a distance that is not 2 in a Cartesian mesh.)
2. If a switch link has axis A then the link on the adjacent switch has axis –A.

3. If a switch S1 has 2 links A and B to adjacent switches S2 and S3. And those switches have a common neighbor switch S4 different from S1, then the link from S2 to S4 has axis B and the link from S3 to S4 has axis A.

We repeat these steps until there is no further change to the fabric. If the fabric is (mostly) a regular mesh all of the links will be assigned axes. If there are some extra links they will not be assigned axes.

We are only concerned with Cartesian meshes. I.e. we do not consider meshes where the natural angles are different than 90 degrees.

Coordinates

Now that we have assigned as many axes as possible to the links we can assign coordinates to each switch in the d-dimensional mesh. We do this by starting from the original ‘seed’ switch used to induce the axes and take it to be the origin. Stepping n steps in the +X, -X, etc direction we assign x coordinate as +n or -n. If the path wraps, which will occur for a torus, then there are multiple possible coordinates. We select the unique coordinate with the smallest absolute value or the positive value in the case of a tie.
Reorder ports

We are almost ready to reorder the ports but we have to deal with a special problem. In a torus with an even length along one axis consider two switches S1 and S2 which are exactly half way around the torus along that axis which we take to be the X axis. If we reorder the switch ports so that +X always comes in order before –X then lash will pick a shortest path from S1 to S2 along the +X axis. It will also go from S2 to S1 along the +X axis wrapping around the torus along the +X axis. This behavior will end up requiring additional VLs to provide a deadlock free routing of the fabric. We can prevent this by the expedient of reversing the order of switch links in the +X and –X axes when the sign of the x coordinate changes. We choose to reverse the natural order if the coordinate is positive. So for a switch at (2, y, z) we would order the ports –X, +X, etc. and for a switch at (-3, y, z) we would order the ports +X, -X, etc. Because the selected paths are always a shortest path this has no effect except in the case just described.
With this small consideration we reorder the links out of each switch so the axes are presented in -+ or +- order depending on the coordinate in that axis and links that do not have axes are presented last.

Appendix – Characteristic polynomials
	Dimension
	Size
	Polynomial

	2
	2(2
	[image: image1.png]—4 + x°

	
	3(2
	[image: image2.png]8+ 9x—x°

	
	4(2
	[image: image3.png]16+ 12x—x*°

	
	5(2
	[image: image4.png]24+ 17x—x*

	
	6(2
	[image: image5.png]32+ 24x—x*°

	
	3(3
	[image: image6.png]—15—-32x—18x"+ x~

	
	4(3
	[image: image7.png]—28—48x—21x"+x~

	
	5(3
	[image: image8.png]—39 — f4x— 26x°+ x*

	
	6(3
	[image: image9.png]—48 - 80x—33x"+ x*

	
	4(4
	[image: image10.png]—48 — 64x— 24x"+ x*

	
	5(4
	[image: image11.png]—60 — 80x— 29x° + x*

	
	6(4
	[image: image12.png]—64 — 96x— 36x°+ x*

	
	5(5
	[image: image13.png]—63 — 96x— 34x°+ x*

	
	6(5
	[image: image14.png]—48—112x — 41x"+ x~

	
	6(6
	[image: image15.png]—128x—48x"+ x*

	3
	2(2(2
	[image: image16.png]16+ 12x—x*°

	
	3(2(2
	[image: image17.png]—28—48x—21x"+x~

	
	4(2(2
	[image: image18.png]—48 — 64x— 24x"+ x*

	
	5(2(2
	[image: image19.png]—60 — 80x— 29x° + x*

	
	6(2(2
	[image: image20.png]—64 — 96x— 36x°+ x*

	
	3(3(2
	[image: image21.png]48+ 127x+ 112x° + 34x° —

	
	4(3(2
	[image: image22.png]80 + 180x+ 136x°“+37x° —.

	
	5(3(2
	[image: image23.png]96 + 215x+ 160x° +42x° —

	
	6(3(2
	[image: image24.png]96 + 232x+ 184x° +49x° —

	
	4(4(2
	[image: image25.png]128 + 240x + 160x° + 40x° —.

	
	5(4(2
	[image: image26.png]144 +276x + 184x° + 45x° —.

	
	6(4(2
	[image: image27.png]128 + 288x + 208x° + 52x° —.

	
	5(5(2
	[image: image28.png]144 +303x + 208x° + 50x° —.

	
	6(5(2
	[image: image29.png]96 + 296x+ 232x°+57x° —.

	
	6(6(2
	[image: image30.png]0+ 256x+ 256x° + 64x°-

	
	3(3(3
	[image: image31.png]—81—288x— 381x" —224x° - 51x" +x°

	
	4(3(3
	[image: image32.png]—132—-416x—487x"— 256x° — 54x° + «*

	
	5(3(3
	[image: image33.png]—153 —480x—557x°— 288x° — 59x° + «*

	
	6(3(3
	[image: image34.png]—144 —480x—591x"—320x° — 66x° + x°

	
	4(4(3
	[image: image35.png]—208—-576x—600x"— 288x° —57x %+ x*

	
	5(4(3
	[image: image36.png]—228—-640x—671x"—320x° — 622"+ x°

	
	6(4(3
	[image: image37.png]—192 —608x —700x"— 352x° — 69x° + x°

	
	5(5(3
	[image: image38.png]—225-672x—733x"—352x - 67x "+ "

	
	6(5(3
	[image: image39.png]—144 —-576x —743x°— 384x° — 74x" + «*

	
	6(6(3
	[image: image40.png]0—384x—720x" —416x° —81x~ +x°

	
	4(4(4
	[image: image41.png]—320-768x—720x"—320x" — 60x°+ x°

	
	5(4(4
	[image: image42.png]—336—-832x—792x"—352x° — 65x° + x°

	
	6(4(4
	[image: image43.png]—256—768x—816x"—384x° — 72x°+ x°

	
	5(5(4
	[image: image44.png]—324 —864x—855x"— 384x° — 70x" + «°

	
	6(5(4
	[image: image45.png]—192 - 736x —860x"—416x° — 77x %+ x°

	
	6(6(4
	[image: image46.png]0—512x—832x" — 448x° —84x~ + x°

	
	5(5(5
	[image: image47.png]—297 —864x —909x° — 416x° — 752~ + x*

	
	6(5(5
	[image: image48.png]—144 - 672x —895x° — 448x° — B2x° + «*

	
	6(6(5
	[image: image49.png]0— 384x— 848x~ — 480x° —89x~ + x°

	
	6(6(6
	[image: image50.png]0+ 0x—768x"—512x° —96x~ +x°

