Overview

This document describes high level design, requirements and processing guide lines of NVMe Pass Through/IOCTL commands in open source Windows driver. When the driver receives SRB Function type as SRB_FUNCTION_IO_CONTROL, it explores the information embedded in the beginning of SRB DataBuffer and determines how to engage further processing. A simple user application example is also provided in the end of this document.
Input Data Buffer
The input data buffer specified in DeviceIoControl API is defined as a structure called NVME_PASS_THROUGH_IOCTL.

#define NVME_STORPORT_DRIVER 0xE000
#define NVME_PASS_THROUGH_SRB_IO_CODE \

CTL_CODE(NVME_STORPORT_DRIVER, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define NVME_GET_NAMESPACE_ID \

 CTL_CODE(NVME_STORPORT_DRIVER, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define NVME_SIG_STR “NvmeMini”

#define NVME_SIG_STR_LEN 8
#define NVME_NO_DATA_TX 0 // No data transfer involved
#define NVME_FROM_HOST_TO_DEV 1 // Transfer data from host to device
#define NVME_FROM_DEV_TO_HOST 2 // Transfer data from device to host
#define NVME_BI_DIRECTION 3 // Transfer data from host to device and then vice versa
#define NVME_IOCTL_VENDOR_SPECIFIC_DW_SIZE 6 // Vendor unique qualifier in DWORDs

#define NVME_IOCTL_CMD_DW_SIZE 16 // NVMe command entry size in DWORDs

#define NVME_IOCTL_COMPLETE_DW_SIZE 4 // NVMe completion entry size in DWORDs
typedef struct _NVME_PASS_THROUGH_IOCTL
{

 /* WDK defined SRB_IO_CONTROL structure */

 SRB_IO_CONTROL SrbIoCtrl;

 /* Vendor unique qualifiers for vendor unique commands */

 DWORD VendorSpecific[NVME_IOCTL_VENDOR_SPECIFIC_DW_SIZE];

 /* 64-byte submission entry defined in NVMe Specification */

 DWORD NVMeCmd[NVME_IOCTL_CMD_DW_SIZE];

 /* DW[0..3] of completion entry */

 DWORD CplEntry[NVME_IOCTL_COMPLETE_DW_SIZE];

 /* Data transfer direction, from host to device or vice versa */

 DWORD Direction;

 /* 0 means using Admin queue, otherwise, IO queue is used */

 DWORD QueueId;

 /* Transfer byte length, including Metadata, starting at DataBuffer */

 DWORD DataBufferLen;

 /* Set to 0 if not supported or interleaved with data */

 DWORD MetaDataLen;

 /* Returned byte length from device to host,

 * including at least the length of this structure, and data if any. */

 DWORD ReturnBufferLen;

 /* Start with Metadata if present, and then regular data */

UCHAR DataBuffer[1];

} NVME_PASS_THROUGH_IOCTL, *PNVME_PASS_THROUGH_IOCTL;

IOCTL_STATUS

There are three levels of status that user applications receive after calling DeviceIoControl API. Firstly, it’s the return code of the API. Secondly, it’s the ReturnCode field of SRB_IO_CONTROL structure, which is marked down by miniport driver. The third level is the completion status included in the completion entry after the request had been issued to the controller. It’s recommended that user applications need to look into all three levels of status to ensure the request is completed successfully.

The following status is noted in ReturnCode of SRB_IO_CONTROL structure by miniport driver when the request is processed by the driver. User applications need to examine ReturnCode to find out if driver had discovered any errors in the request.

When ReturnCode is NVME_IOCTL_SUCCESS, which indicates the request had been issued to the Controller and user applications need to examine the completion status of CplEntry. Otherwise, the request had not been issued to controller due to certain error.
enum _IOCTL_STATUS
{

 NVME_IOCTL_SUCCESS,

 NVME_IOCTL_INVALID_IOCTL_CODE,

 NVME_IOCTL_INVALID_SIGNATURE,

 NVME_IOCTL_INSUFFICIENT_IN_BUFFER,

 NVME_IOCTL_INSUFFICIENT_OUT_BUFFER,

 NVME_IOCTL_UNSUPPORTED_ADMIN_CMD,

 NVME_IOCTL_UNSUPPORTED_NVM_CMD,

 NVME_IOCTL_INVALID_ADMIN_VENDOR_SPECIFIC_OPCODE,

 NVME_IOCTL_INVALID_NVM_VENDOR_SPECIFIC_OPCODE,

 NVME_IOCTL_ADMIN_VENDOR_SPECIFIC_NOT_SUPPORTED, //AVSCC=0

 NVME_IOCTL_NVM_VENDOR_SPECIFIC_NOT_SUPPORTED, // NVSCC=0

 NVME_IOCTL_INVALID_DIRECTION_SPECIFIED,// when Direction is greater than 3

 NVME_IOCTL_INVALID_META_BUFFER_LENGTH,

 NVME_IOCTL_PRP_TRANSLATION_ERROR,

 NVME_IOCTL_INVALID_PATH_TARGET_ID,
 NVME_IOCTL_FORMAT_NVM_PENDING, // Only one Format NVM at a time

 NVME_IOCTL_FORMAT_NVM_FAIED,
 NVME_IOCTL_INVALID_NAMESPACE_ID

};

With the ReturnCode, there are three levels of status codes user applications can examine after calling DeviceIoControl API:

Level 1: Returned status of DeviceIoControl API

Level 2: ReturnCode of SRB_IO_CONTROL structure

Level 3: Status Field of Completion Entry

When our driver receives the request, it always marks SrbStatus as SRB_STATUS_SUCCESS no matter what. In case of any errors, driver just marks down proper status code in ReturnCode. Therefore, the basic scenario user applications need to follow to identify any errors after calling DeviceIoControl is:

1. When DeviceIoControl returns with error, GetLastErr is used to find out more details.

2. When DeviceIoControl returns successfully, ReturnCode needs to be examined to see if driver notes any errors down.

3. When ReturnCode is NVME_IOCTL_SUCCESS, the Status Field of Completion Entry serves as the final status of the completed command.

Requirements
1. Applications need to allocate and populate the information in input data buffer, including size of NVME_PASS_THROUGH_IOCTL and desired payload size, when initiating and issuing IOCTL calls to controller.

2. The length of input data buffer needs to be at least size of sizeof(NVME_PASS_THROUGH_IOCTL).
3. The desired payload size indicated in DataBufferLen can’t exceed maximum transfer size driver supports.

4. The data buffer starts at DataBuffer of NVME_PASS_THROUGH_IOCTL.
5. The ReturnBufferLen needs to match output buffer length specified in DeviceIoControl. The minimum size is sizeof(NVME_PASS_THROUGH_IOCTL). When transferring data from device to host, ReturnBufferLen is the sum of data length and sizeof(NVME_PASS_THROUGH_IOCTL);
6. QueueId of NVME_PASS_THROUGH_IOCTL suggests the request is meant to be issued via Admin or IO queue.
7. If the Opcode is not well-known in NVMe specification or vendor defined specific command set, STOR_STATUS_INVALID_DEVICE_REQUEST is returned.

8. If it’s for an Admin vendor specific command and the AVSCC bit of Identify Controller structure is not set as 1, STOR_STATUS_INVALID_DEVICE_REQUEST is returned.

9. If it’s for a NVM vendor specific command and the NVSCC bit of Identify Controller structure is not set as 1, STOR_STATUS_INVALID_DEVICE_REQUEST is returned.

10. The length of the desired payload is always checked by the driver. When the value after subtracting sizeof(NVME_PASS_THROUGH_IOCTL) from DataTransferLength of SRB is less than the size of data being transferred, STOR_STATUS_INVALID_BUFFER_SIZE is returned.

11. No Metadata transfer is supported.

12. NVMe Read/Write commands are not supported.
13. Any violations to any of above requirements, an appropriate error status is returned.

Processing Guide Lines

1. The entry point of processing IOCTL requests (NVMeProcessIoctl) is called when receiving SRB_FUNCTION_IO_CONTROL.
2. NVMeProcessIoctl validates the requests via the following preliminary checkups in SRB_IO_CONTROL structure:
· Valid Signature? (NvmeMini)
· Valid ControlCode? (NVME_PASS_THROUGH_SRB_IO_CODE)
3. NVMeProcessIoctl validates the requests via the following preliminary checkups in NVMeCmd fields:

· Valid Opcode?
· Valid Namespace Identifier?

· For vendor defined specific commands, if the AVSCC/NVSCC bit is set as 1?

· Is the data buffer big enough? (Based on DataBufferLen/ReturnBufferLen of NVME_PASS_THROUGH_IOCTL and the specified command fields)
4. If no error found, NVMeProcessIoctl starts to process the request:

· Determine which queue to use when command issue is needed.

· When QueueId is not zero, finds out the current core and the associated submission queue.

· Acquire Command ID if command issue is required. Otherwise, complete the request with existing information driver has. When fails on acquiring Command ID, return SRB_STATUS_BUSY to force Storport re-send the request.
· Set up a callback routine called NVMeIoctlCallback in SRB Extension.

· Convert data buffer into PRP entries/List if data transfer required.
· Copy nvmCmd fields to the next submission entry and increase Submission Tail Pointer by one.
· Issue the command via specific Doorbell register.
5. When command completes and NVMeIoctlCallback is called:

· Modify DataTransferLength of SRB as the sum of ReturnBufferLen and sizeof(NVME_PASS_THROUGH_IOCTL) if transferring data from device to host.

· Modify DataTransferLength of SRB as the sizeof(NVME_PASS_THROUGH_IOCTL) if transferring data from host to device.

· Fill CplEntry of NVME_PASS_THROUGH_IOCTL with the entire completion entry before completing the request back to Storport.

DeviceIoControl Example
The following example demonstrates how to:

· Transfer data from host to device

· Transfer data from device to host

· No data transfer

#define NVME_PT_TIMEOUT 40

HANDLE hDevice = INVALID_HANDLE_VALUE;
BOOL Status = 0;

DWORD Count = 0;

DWORD InputBufLen = 0;
DWORD OutputBufLen = 0;
PNVME_PASS_THROUGH_IOCTL pInBuffer = NULL;

PNVME_PASS_THROUGH_IOCTL pOutBuffer = NULL;
if (DataTX == NVME_NO_DATA_TX)
{

 /* Allocate input buffer to accommodate size of NVME_PASS_THRUGH_IOCTL only */
 InputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL);
 pInBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(InputBufLen);

 /* Allocate output buffer to accommodate size of NVME_PASS_THRUGH_IOCTL only */
 OutputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL);

 pOutBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(OutputBufLen);

}

else if (DataTX == NVME_FROM_HOST_TO_DEV)

{

 /* Allocate input buffer to accommodate size of NVME_PASS_THRUGH_IOCTL and data */
 InputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL) + ByteSizeTX – 1;
pInBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(InputBufLen);

 /* Allocate output buffer to accommodate size of NVME_PASS_THRUGH_IOCTL only */
 OutputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL);

 pOutBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(OutputBufLen);

}

else if (DataTX == NVME_FROM_DEV_TO_HOST)

{

 /* Allocate input buffer to accommodate size of NVME_PASS_THRUGH_IOCTL only */
 InputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL);
pInBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(InputBufLen);

 /* Allocate output buffer to accommodate size of NVME_PASS_THRUGH_IOCTL and data */
 OutputBufLen = sizeof(NVME_PASS_THROUGH_IOCTL) + ByteSizeTX - 1;

 pOutBuffer = (PNVME_PASS_THROUGH_IOCTL) malloc(OutputBufLen);

}

else {

return FALSE;

}

/* Confirm we have buffers allocated successfully */
if (pInBuffer == NULL || pOutBuffer == NULL)

return FALSE;

/* Zero out the buffers */
memset(pInBuffer, 0, InputBufLen);
memset(pOutBuffer, 0, OutputBufLen);

/* Populate SRB_IO_CONTROL fields in input buffer */
pInBuffer->SrbIoCtrl.ControlCode = NVME_PASS_THROUGH_SRB_IO_CODE;

pInBuffer->SrbIoCtrl.HeaderLength = sizeof(SRB_IO_CONTROL);

memcpy((UCHAR*)(&pInBuffer->SrbIoCtrl.Signature[0]), NVME_SIG_STR, NVME_SIG_STR_LEN);

pInBuffer->SrbIoCtrl.Timeout = NVME_PT_TIMEOUT;
pInBuffer->SrbIoCtrl.Length = InputBufLen - sizeof(SRB_IO_CONTROL);
pInBuffer->DataBufferLen = ByteSizeTX;
/* Fill in pInBuffer->NVMeCmd here */

/* Fill pInBuffer->DataBuffer here when transferring data to device */

Status = DeviceIoControl(

 hDevice /* Handle to \\.\scsi device via CreateFile */

 IOCTL_SCSI_MINIPORT, /* IO control function to a miniport driver */

 pInBuffer , /* Input buffer with data sent to driver */

 InputBufLen, /* Length of data sent to driver (in bytes) */

 pOutBuffer /* Output buffer with data received from driver */

 OutputBufLen, /* Length of data received from driver */

 &Count, /* Bytes placed in DataBuffer */

 NULL); /* NULL = no overlap */

Command Handling

This section describes how driver categorizes processing the commands based on the Opcodes after ensure the lengths of input the output buffers:

1. Simply pass through the following commands:
- Get Log Page [return info]

- Identify [return info]

- Get Features [return info if required]

- Set Features
 - Arbitration

 - Power Management

 - LBA Range Type

 - Temperature Threshold

 - Error Recovery

 - Volatile Write Cache

 - Interrupt Coalescing

 - Interrupt Vector Configuration

 - Write Atomicity

 - Asynchronous Event Configuration

 - Software Progress Marker

 - Firmware Activate

 - Firmware Image Download

 - Security Send

 - Security Receive

 - Vendor Specific

 - Flush

 - Write Uncorrectable

 - Compare

 - Dataset Management
 - Format NVM

Reject the following commands:

- Delete I/O Submission Queue

- Create I/O Submission Queue

- Delete I/O Completion Queue

- Create I/O Completion Queue

- Abort

- Set Features – Number of Queues

- Asynchronous Event Request

- Read

- Write

Notes

Some commands require the target namespace specified, such as Format NVM, Identify, etc. Before sending these commands, user applications need to query the associated Namespace ID, which can be retrieved via an IOCTL call with code called NVME_GET_NAMESPACE_ID.

