

Trim Support in NVMe Windows Driver

Introduction

This patch adds support for the SCSI UNMAP command that Storport sends down
under Windows 8 when it carries out Trim requests. Upon receiving an UNMAP
command, the driver will in turn, translate the associated SCSI UNMAP
block descriptors into NVMe Dataset Mangement (DSM) range definitions and
send those to the controller along with a DSM command with Deallocate (AD)
attribute set per section 6.6 of NVMe spec.

Storport must initially query the driver to determine if the device
supports Trim and additionally, it must learn how that support is
implemented (i.e. it is done via WRITE SAME(16) or via UNMAP, etc.).
Associated parameters must also be ascertained: it determines
for example, in the case of UNMAP, how many UNMAP block descriptors
can be sent with a single command.

All of that information is retrieved by sending SCSI Inquiry
commands for the Logical Block Provisioning VPD page and the
Block Limits VPD page. There is one other VPD page,
the Block Device Characteristics page, which provides a couple of
other pieces of related information, such as whether the device
is non-rotating (SSD).

These VPD pages are now implemented in the driver and are populated
based on the NVM Express: SCSI Translation Reference document.

The work here was straightforward as the SCSI translation document fully lists all of the prescribed VPD page information. Moreover, the Windows 8 WDK,Storport.h file now has all of the associated #defines and structures for these VPD pages and for the UNMAP command itself. The Windows 7 WDK Storport.h only supported VPD pages up through VPD_SCSI_PORTS (0x88), whereas the Windows 8 WDK version of Storport.h includes: VPD_BLOCK_LIMITS (0xB0), VPD_BLOCK_DEVICE_CHARACTERISTICS (0xB1), and VPD_LOGICAL_BLOCK_PROVISIONING (0xB2).

Windows 8 builds and Windows 7 Compatibility

In order to retain compatibility with the Windows 7 WDK, and to only
advertise what is actually called upon by Storport under Windows 7,
the code for the new VPD pages and UNMAP is conditionally compiled
based on whether driver is being built for Windows 8 or beyond.

A #define WINDOWS_8 was added to nvmestd.h and code that is conditionally
compiled is wrapped as follows:

 /*UNMAP not supported prior to Win 8*/
 #if _WIN32_WINNT >= WINDOWS_8
 case SCSIOP_UNMAP:
 returnStatus = SntiTranslateUnmap(pSrb);
 break;
 #endif

And the number VPD pages we previously supported is conditionally
compiled in nvmeSntiTypes.h

#if _WIN32_WINNT >= WINDOWS_8
#define INQ_NUM_SUPPORTED_VPD_PAGES 6
#else
#define INQ_NUM_SUPPORTED_VPD_PAGES 3
#endif

For the Windows 7 WDK, the driver builds as before, with the same supported VPD pages
and SCSI commands supported. When built for Windows 8, support for the UNMAP command
and associated VPD pages is included.

UNMAP Feature Implementation Details

Changes made to Source Files

nvmeSnti.c

Five new functions were added:
VOID SntiTranslateBlockLimitsPage(
 PSCSI_REQUEST_BLOCK pSrb
);

VOID SntiTranslateBlockDeviceCharacteristicsPage(
 PSCSI_REQUEST_BLOCK pSrb
);

VOID SntiTranslateLogicalBlockProvisioningPage(
 PSCSI_REQUEST_BLOCK pSrb,
 PNVME_LUN_EXTENSION pLunExt
);

SNTI_TRANSLATION_STATUS SntiTranslateUnmap(
 PSCSI_REQUEST_BLOCK pSrb

SNTI_STATUS SntiValidateUnmapLbaAndLength(
 PNVME_LUN_EXTENSION pLunExt,
 PNVME_SRB_EXTENSION pSrbExt,
 UINT64 lba,
 UINT32 length
);

nvmestd.h

A new field, dsmBuffer was added to the Srb Extension. This is used to house the range definitions passed with the DSM command as part of the UNMAP processing. A total of 4K
was needed for this buffer (size of range definition 16 bytes *max ranges 256). While consuming this amount of space in the SRB extension is not an issue, we still wanted to be conservative and were actually able to get by with adding only 2K by combining this new 2K
area with the existing 2K prpList -- the prpList buffer is not needed for the UNMAP processing (it uses PRP1 only), so this works well. The addition of dsmBuffer is heavily commented and the buffer size calculation that achieves the 4K total, serves to saliently reinforce that there is a special association.

Also added to nvmestd.h were:

#define WINDOWS_8 	 0x602
and
#define PAGE_SIZE_IN_DWORDS PAGE_SIZE_IN_4KB / 4

nvmeSntiTypes.h

For supplying information in the new VPD pages, several other items were
added to nvmeSntiTypes.h as follows:

For use in SntiTranslateSupportedVpdPages:

#define BYTE_4 4
#define BYTE_5 5
#define BYTE_6 6

For populating VPD pages per NVMe SCSI Translation
Reference document:

#define INQ_RESERVED 		 	0
#define BLOCK_LIMITS_PAGE_LENGTH 		0x3C
#define BLOCK_DEVICE_CHAR_PAGE_LENGTH 		0x3C
#define LOGICAL_BLOCK_PROVISIONING_PAGE_LENGTH 	0x04
#define MAX_UNMAP_BLOCK_DESCRIPTOR_COUNT 	256
/* Rotation rate of 1 indicates non-rotating (SSD) */
#define MEDIUM_ROTATIONAL_RATE 		0x0001
#define FORM_FACTOR_NOT_REPORTED 		0
#define NO_THIN_PROVISIONING_THRESHHOLD 	0
#define WR_SAME_16_TO_UNMAP_NOT_SUPPORTED 	0
#define WR_SAME_10_TO_UNMAP_NOT_SUPPORTED 	0
#define ANC_NOT_SUPPORTED 		0
#define NO_PROVISIONING_GROUP_DESCRIPTOR 	0

/*
 Set the following to 1 if your NVMe controller returns zeros when LBAs
 that have been previously UNMAPED (via DSM dealloc) are read
*/
#define ZEROS_RETURNED_INDICATOR 1

nvmestd.c

In October of 2012, a patch had been put in NVMeFindAdapter to get around an
assert that was occurring on checked builds of Windows 8. It was subsequently
removed as it was determined there may be some performance hit.
Now that we are specifically testing Windows 8 features, it has been put back here as a
convenience to avoid getting the assert right out the chute. This can be taken out again if so desired.

 #if _WIN32_WINNT >= WINDOWS_8
 /* Ensure Storport allocates the DMA adapter object */
 StorPortGetUncachedExtension(pAE, pPCI, 1);
 #endif

Trim Support ver .01	1	6/3/2013

