	Group
	Requirement
	Done
(0–1)
	Acked
	Notes / How Met

	MPI
	
	
	
	

	1.
	Message boundaries
	1
	
	MSG and tagged interfaces

	2.
	Minimize instructions in critical path
	1
	
	Optimized APIs with control information for operations configured during initialization.

	3.
	Zero copy
	1
	
	Data transfer interfaces are asynchronous and can support zero-copy, subject to provider hardware capabilities.

	4.
	One-sided transfers
	1
	
	RMA interfaces

	5.
	One-sided atomics
	1
	
	Atomic interfaces

	6.
	Two-sided semantics
	1
	
	MSG and tagged interfaces

	7.
	Arbitrary buffer alignment for data transfers
	1
	
	No requirement specified

	8.
	Asynchronous progress independent of API calls
	
	
	See progress discussion to determine if MPI needs are met.
https://www.openfabrics.org/downloads/OFIWG/2014-05-06-ofiwg-progress.pptx
 https://www.openfabrics.org/downloads/OFIWG/2014-05-13-ofiwg-progress2.pptx

	9.
	Scale to millions of communication peers
	1
	
	Introduces reliable-unconnected (reliable-datagram) model. Adds address vector class to improve address resolution performance and minimize local address data memory requirements. Allows AVs to be shared among multiple processes on a single node, and will tie into the scalable SA framework. Interface concepts are there, but underlying implementation is developing.

	10.
	Reliable and unreliable communication
	1
	
	Multiple endpoint types are defined

	11.
	Connectionless communication
	1
	
	Multiple endpoint types are defined

	12.
	Specify remote RMA address
	1
	
	RMA interfaces

	13.
	RMA write with immediate
	0.5
	
	RMA writemsg interface and fi_eq_data_entry for completions. Support is available, but not an optimized call.

	14.
	Larger RMA write immediate data
	0.5
	
	RMA writemsg and fi_eq_data_entry support 8-byte immediate data. Iovec could be used to transfer more than 8-bytes of immediate data. Completion support would require compatible changes to fi_eq_data_entry.

	15.
	Reuse short buffers immediate
	1
	
	FI_INJECT flag and ‘inject’ data transfers allow for buffer reuse. Provider indicates both the maximum size of single transfer and the maximum total amount of buffer space available. No restriction is placed on the provider implementation, but inline is supported.

	16.
	Native OS polling and blocking support
	1
	
	Wait objects are selectable by application and may be retrieved for use in native calls (e.g. select/poll/pthread). For performance reasons, fabric interfaces are also defined for polling / waiting on objects.

	17.
	Discover device, ports and their capabilities, but not tied to specific hardware models.
	
	
	Proposal abstracts device and ports from application. Provider and ‘domain’ concepts expose application capabilities and usage requirements (for maximum performance). Discovery is built around fi_getinfo call, but operates at a higher level of abstraction than a device level.

	18.
	SGL support
	1
	
	All operations support SGL

	19.
	Atomic support
	1
	
	Atomic interfaces provide full set of operations and data transfer sizes.

	20.
	Multiple consumers in a single process. Independent handles.
	1
	
	

	21.
	Avoid collective initialization across multiple processes
	1
	
	

	22.
	Independent process images between peers
	1
	
	

	23.
	Separate completion order from delivery order
	
	
	No intent to make this association, but see ordering discussion (TBD) to determine if MPI needs are met.

	24.
	Support any process address region – stack, heap
	1
	
	Memory registration constraints and zero copy support limit use of stack space for data transfers – see FI_INJECT.

	25.
	Do not require a specific wire protocol
	1
	
	Support for multiple wire protocols will be supported, including support for provider specific protocols (e.g. Intel PSM) and external protocols layered over lower-level protocols (e.g. rsockets over IB/iWarp RC QPs). Underlying protocol exposed through fi_info structure. Applications must adhere to any low-level protocol requirements, such as 40-byte GRH UD header, but such requirements are enforced only when that protocol is used.

	26.
	Ability to establish connections
	1
	
	CM interfaces

	27.
	Must grant permission for peer access to memory
	1
	
	Registration is required for remote access to local memory.

	28.
	Clean up resources on process termination
	1
	
	Kernel requirement to reclaim any allocated resources.

	29.
	Expose MTU for unconnected data transfers
	1
	
	Endpoints have a FI_OPT_MAX_MESSAGE_SIZE (size_t) property.

	30.
	Control over CM timeouts
	1
	
	Use administrative file interfaces to specify CM timeout / retry values (~ /proc/sys/net/ipv4). Provide endpoint control options for an application to override defaults.

	31.
	Support non-blocking address handle creation
	1
	
	Address vector interfaces are asynchronous.

	32.
	Support non-blocking CM calls
	1
	
	CM interfaces are asynchronous.

	33.
	Support non-blocking memory registration
	1
	
	Memory registration interfaces are asynchronous.

	34.
	Specify buffer / length as function parameters – use fewer structures to minimize memory accesses
	1
	
	Optimized data transfer APIs take buffer and length as parameters.

	35.
	Query number of credits available in a QP
	0.5
	
	Data transfer APIs return EAGAIN if queues are full.

	36.
	Eliminate ‘queue pair’ concept, and replace with send and receive channels
	0.5
	
	Queue pair is replaced with more generic ‘endpoint’ class. Endpoints may be send-only, receive-only, or both. An endpoint may support multiple data transfer flows. To support connection-oriented endpoints, send and receive channels may need to be tightly coupled.

	37.
	Completion at target for RMA write
	0.3
	
	RMA and event queue interfaces support this notion. Need mechanism for provider to indicate if this is supported and to document the expected behavior. Are events at the target side associated with an endpoint or a memory region bound to an event queue?

	38.
	Ability to determine if loopback communication is supported
	
	
	Assumption is that loopback communication must be supported by providers.

	39.
	Document what functionality must be provided, versus which is optional
	0.9
	
	Mechanism is available, but specific functionality needs to be determined. Intent is to allow providers to optionally support specific functionality. Some support may require provider specific protocols.

	40.
	Improve ability to determine cause of errors
	1
	
	Provider specific error codes and strerror functionality are exposed.

	41.
	Standardized high-level tag matching interface
	1
	
	Tagged interfaces

	42.
	Standardized high-level non-blocking collective operations
	0.3
	
	Triggered operation support defined as a collective building block.

	43.
	Standardized atomic operations
	1
	
	Atomic interfaces

	44.
	Providers must support full set of interfaces, even if emulated
	0.5
	
	Providers are free to support all interfaces. Proprietary protocols are supported. The framework can provide emulated interfaces over device specific interfaces (e.g. libibverbs) that providers can re-use. No plans to require providers to support any specific interfaces, or to what extent they must be supported.

	45.
	Run-time query to determine which interfaces are supported
	1
	
	The fi_info protocol_cap field indicates which interfaces are supported by a provider. Additional query functionality is provided for atomic support.

	46.
	Direct access to vendor-specific features
	1
	
	Applications can open provider specific interfaces by name. All framework classes support provider specific interface extensions.

	47.
	Run-time version query support
	1
	
	Version data available through query interfaces.

	48.
	Compile-time convention for safe, non-portable code
	1
	
	FI_DIRECT allows building against a specific provider, with documented compile-time flags that a provider must set to allow highly-optimized application builds. Providers may override static inline wrapper calls and select enum values to support function inlining.

	49.
	Direct access to vendor
	1
	
	Framework only intercepts a small number of calls. All critical calls go directly to the provider.

	50.
	Run-time query to determine if memory registration is necessary
	1
	
	FI_LOCAL_MR domain capability flag. Long term goal to move registration caches into framework.

	51.
	Notification of forced memory deregistration (e.g. munmap)
	
	
	

	52.
	Fork support – parent process may continue to use all opened handles and fabric resources
	
	
	Any effect on API?

	53.
	For support – opened fabric resources are not shared with child processes. Child must re-initialize and open any desired resources
	
	
	Any effect on API?

	54.
	Do not require use of GRH (network specific header) with data transfers.
	1
	
	MSG interfaces allow posting of GRH headers for applications that need them, but posting is not required, and the GRH format is not specified as part of the API. The exposed low-level endpoint protocol indicates if a GRH is required or not.

	55.
	Request ordered versus unordered delivery, by traffic type (send/receive versus RMA)
	0.5
	
	See ordering discussion (TBD) to see if MPI needs are met.

	56.
	Allow listeners to request a specific network address
	1
	
	Endpoint creation and CM interfaces.

	57.
	Allow receivers to consume buffers directly related to size of incoming message (e.g. slab buffering)
	0.5
	
	FI_MULTI_RECV flag adds support for slab receive buffering. Need mechanism to indicate support.

	58.
	Aggregate completions
	1
	
	Event counters interfaces.

	59.
	Out-of-band messaging
	
	
	Need clarification. Endpoints have the concept of multiple flows, which might be useful here.

	60.
	Non-contiguous data transfer support
	0.5
	
	Struct iovec is supported. Other formats would require extensions to the API or special interpretation of iovec data.

	61.
	No page size restriction
	1
	
	

	62.
	Access to underlying performance counters
	0.5
	
	Event counter interfaces. Need to verify if APIs are usable for generic purposes, such as reading performance counters, and document their usage in such cases.

	63.
	Get/set network QoS levels
	1
	
	Endpoints getopt/setopt interfaces.

	64.
	Atomic support for all C types
	1
	
	Atomic interfaces – checked against MPI defined types. Provider support is optional, but queryable.

	65.
	Full set of atomic operation support
	1
	
	Atomic interfaces – checked against MPI operations. Provider support is optional, but queryable.

	66.
	Query to determine if atomic operations are coherent with host
	1
	
	FI_WRITE_COHERENT flag.

	67.
	Offset based communication – RMA target address as offset
	
	
	

	68.
	Allow application to discover if VA or offset based RMA performs better
	
	
	

	69.
	Aggregate completions per endpoint and per memory region
	0.5
	
	Event counters interfaces. Need to define/document use case for per memory region, versus per endpoint.

	70.
	Specify remote access keys (rkeys) when registering
	1
	
	MR interfaces, FI_USER_MR_KEY capability flag.

	71. [bookmark: _GoBack]
	Specify arbitrary sized atomic ops
	0
	
	Atomic interfaces limited to full set of C types. Need clarification.

	72.
	Specify/query ordering of atomics
	
	
	See ordering discussion (TBD) to see if it meets MPI needs.

	73.
	Provide network topology data
	
	
	Fabric class defined where topology data would go. Topology interfaces and data structures are not defined.

	74.
	Without tag matching, need to send/receive two buffers
	
	
	Tagged interfaces are defined.

	75.
	Optional support for thread safety
	1
	
	Compile and run-time threading options, similar to MPI. fi_threading enum.

	76.
	Support for checkpoint/restart. Allow closing stale handles that may not have a matching kernel resource.
	
	
	Any effect on API?

	77.
	No assumption of maximum transfer size
	
	
	Maximum message sizes supported by provider exposed through attributes.

	78.
	No assumption that memory translation is in network hardware
	
	
	Any effect on API?

	79.
	No assumption communication buffers are in RAM
	
	
	Any effect on API? Do we need a flag to indicate that an address range is I/O mapped?

	80.
	Support both onload and offload hardware models
	1
	
	See discussion on progress (links above) to see if MPI needs are met.

	81.
	No assumption that API handles refer to unique hardware resources
	1
	
	Handles are abstractions, with no requirement to map to specific hardware resources.

	82.
	Have well-defined failure semantics communicating with peers
	
	
	Need to define error reporting for unexpected disconnect and unreachable unconnected peers.

	
	
	
	
	

	
	
	
	
	

