
Libfabric dpa provider performance

Paolo Inaudi, Emilio Billi, Marco Aldinucci

October 31, 2015

A3Cube [1] is a US based company producing among other products the RON-
NIEE Express fabric [2]. RONNIEE NICs form an In-Memory Network, where a
segment of physical memory on a node can be mapped onto the virtual memory
of another node.

RONNIEE Express is built around the concept of non-coherent memory sharing
paradigm. The memory distribution is transparent to the software and even to
the processors, i.e. memory segments are logically shared, just as in a system
with a centralized bus and shared memory. This capability represents the most
important feature of RONNIEE Express. A memory access by a processor in
the cluster is mediated to the target memory module by the hardware logic.
The major advantage of this feature is that inter-node communication can be
realized by simple load and store operations by the processor, without invocation
of a software protocol stack. The instructions accessing remote memory can be
issued at the user level, and the operating system (OS) need not be involved in
the communication. This results in very low latency communications, typically
in the nanosecond range. DPALIB is a memory manager and API collection that
permit to manage in an extremely robust way all the communication across the
shared memory segments. The main characteristic of RONNIEE express and
DPALIB are:

a) The RONNIEE Express technology implements a remote shared memory
approach in the data transfers between processors.

b) An application can map into its own address space a memory segment
actually residing on another node.

c) Read and write operations from or to this memory segment are automat-
ically and transparently converted by the hardware in remote operations.

d) Memory segments are dynamically managed by the fabric manager.

1



DPALIB provides quality of service and error management mechanism resulting
in failover capabilities, error detection, hot insertion and removal of the clustered
nodes. Thus with this technology it's easy to implement a robust shared memory
ultra-low latency communication across clustered computing nodes, without
using RDMA semantic and any cache coherency mechanism.

The libfabric [4] dpa provider [5] supports the A3Cube RONNIEE Express fabric
using DPALIB. This paper presents some data about performance of the libfab-
ric dpa provider versus native DPALIB performance. Tests were executed on a
2 node cluster where each node features an Intel R© CoreTM i7-4770 @3.40GHz
CPU and is equipped with a RONNIEE Express NIC. As a note to avoid confu-
sion, bandwidth results will be provided in megabytes per second, and we de�ne
1 MB = 106 B.

1 RMA Bandwidth

Given the shared memory interface o�ered by the A3Cube's network, imple-
menting the libfabric RMA data transfer interface requires just a tiny wrapper
over the DPALIB interface.

Table 1: RMA bandwidth test

(a) libfabric dpa

Size (B) Bandwidth (MB/s)
4 40.95
8 82.48
16 159.79
32 313.63
64 738.18

128 1 326.15
256 2 187.85
512 2 897.07

1 024 2 903.32
2 048 2 900.85
4 096 2 896.75
8 192 2 882.17

16 384 2 894.03
32 768 2 850.13
65 536 2 898.54

(b) DPALIB

Size (B) Bandwidth (MB/s)
4 61.59
8 119.86

16 240.07
32 462.79
64 876.16
128 1 543.18
256 2 464.03
512 2 888.72

1 024 2 894.84
2 048 2 896.89
4 096 2 895.05
8 192 2 895.61
16 384 2 889.69
32 768 2 887.68
65 536 2 871.95

The �rst test is a bandwidth benchmark. For libfabric dpa, the results were
obtained with the fi_msg_rma test which is part of the fabtests suite [3].

2



Instead, along with DPALIB A3Cube o�ers the shmbench executable, whose
behavior is very close to the fi_msg_rma one.

In table 1 performance of the libfabric dpa provider is compared with DPALIB
performance.

The data from table 1 is plotted in �gure 1, providing graphical support to the
comparison. Bandwidth �gures are very similar, except for very small messages,
and libfabric dpa tops the network bandwidth with 512 bytes messages, the same
size needed for DPALIB to reach such achievement.

Figure 1: Bandwidth test

22 24 26 28 210 212 214 216
0

1 000

2 000

3 000

byte

M
B
/
s

DPALIB
libfabric

2 RMA Latency

To measure latency on RMA data transfers, A3Cube provides shmpp. Such test
performs a remote write of data, plus it writes a counter after the data. The
receiving end checks on its physical memory the counter value, and when it gets
incremented performs a write of data of the same size on the original sender's
memory, again plus the counter. After the write, both sides locally increment
their counter to be ready for the next loop. After a number of iterations, the
total loop time is divided by the number of iterations to get the round trip time
for data of the size used; the round trip time is halved to get the unidirectional
latency.

No similar test was found in the fabtests suite, so a new one was implemented
modifying fi_msg_rma to reproduce the shmpp behavior using libfabric RMA
primitives.

3



Table 2: RMA latency test

(a) libfabric dpa

Size (B) Latency (µs)
4 0.87
8 0.88
16 0.87
32 0.87
64 0.84

128 0.84
256 0.86
512 0.95

1 024 1.14
2 048 1.51
4 096 2.21
8 192 3.65

(b) DPALIB

Size (B) Latency (µs)
4 0.73
8 0.73
16 0.74
32 0.74
64 0.78
128 0.81
256 0.86
512 0.95

1 024 1.10
2 048 1.45
4 096 2.23
8 192 3.60

Figure 2: RMA latency test

22 24 26 28 210 212
0

1

2

3

4

byte

µ
s

DPALIB
libfabric

Results comparing DPALIB and libfabric dpa are presented in table 2 and �g-
ure 2.

The benchmark shows that the greatest di�erence between libfabric dpa and
DPALIB is when transferred data is very small, with a 20% latency increase
(about 140 nanoseconds) using the libfabric interface to write 4 bytes remotely.

For data transfers writing more than 128 bytes, the latency di�erence between
libfabric dpa and DPALIB can be measured in tens of nanoseconds or less, always

4



below 5%. It means that most users will not notice a performance degradation
using libfabric instead of the native DPALIB interface on this network.

3 Message Queue Interface

DPALIB does not provide a native support for message passing operations. The
message passing interface is implemented in the dpa provider using a shared
memory segment as a receive bu�er.

The latency of the �_msg interface can be tested through fi_msg_pingpong,
which is part of the fabtests suite. Results are shown in table 3 and �gure 3.

Table 3: Message Queue latency test

(a) libfabric dpa

Size (B) Latency (µs)
4 1.84
8 1.76
16 1.77
32 1.79
64 2.07

128 2.12
256 1.90
512 2.04

1 024 2.31
2 048 2.97
4 096 3.74
8 192 5.68

(b) DPALIB

Size (B) Latency (µs)
4 0.73
8 0.73
16 0.74
32 0.74
64 0.78
128 0.81
256 0.86
512 0.95

1 024 1.10
2 048 1.45
4 096 2.23
8 192 3.60

Of course the message queue interface is unable to match performance of the
native DPALIB interface, because it o�ers a di�erent service (message-oriented
data transfer maintaining message boundaries with �ow control).

The fi_msg_pingpong code was then modi�ed to produce a bandwidth test:
to take advantage of the receive bu�er, the sender wouldn't wait for a response
from the receiver, but unidirectionally send as many messages as possible while
the receiver limits itself to post receive bu�ers and read from the completion
queue to ensure progress (tests were executed with FI_PROGRESS_MANUAL).

The results, shown in table 4 and �gure 4, clearly indicate that if each message
is big enough (at least 32 kB), there is no performance loss between DPALIB
and the libfabric dpa provider. So the libfabric message queue interface is a
very good choice for applications needing to stream very large amounts of data

5



Figure 3: Message Queue latency test

22 24 26 28 210 212
0

1

2

3

4

5

6

byte

µ
s

DPALIB
libfabric

Table 4: Message Queue bandwidth test

(a) libfabric dpa

Size (B) Bandwidth (MB/s)
4 2.03
8 4.05
16 8.11
32 16.21
64 32.43

128 66.88
256 132.60
512 264.85

1 024 645.81
2 048 1 603.51
4 096 2 251.79
8 192 2 557.60
16 384 2 766.87
32 768 2 880.10
65 536 2 890.10

(b) DPALIB

Size (B) Bandwidth (MB/s)
4 61.59
8 119.86
16 240.07
32 462.79
64 876.16
128 1 543.18
256 2 464.03
512 2 888.72

1 024 2 894.84
2 048 2 896.89
4 096 2 895.05
8 192 2 895.61
16 384 2 889.69
32 768 2 887.68
65 536 2 871.95

between nodes on this network, since it o�ers the needed bu�ered service with
virtually no overhead (unless the message is split in too small chunks, which is
something an application designed for high performance would never do).

6



Figure 4: Message Queue bandwidth test

22 24 26 28 210 212 214 216
0

1 000

2 000

3 000

byte

M
B
/
s

DPALIB
libfabric

References

[1] A3Cube: A3Cube website. Available at http://a3cube-inc.com/.

[2] A3Cube: Ronniee Express. Available at http://www.a3cube-inc.com/
ronniee-express.html.

[3] OpenFabrics Interfaces Working Group: Fabtests. Available at https://
github.com/ofiwg/fabtests.

[4] OpenFabrics Interfaces Working Group: Libfabric. Available at http://
ofiwg.github.io/libfabric/.

[5] Paolo Inaudi, Marco Aldinucci: Libfabric dpa provider. Available at https:
//github.com/alpha-group/libfabric-provider-dpa.

7

http://a3cube-inc.com/
http://www.a3cube-inc.com/ronniee-express.html
http://www.a3cube-inc.com/ronniee-express.html
https://github.com/ofiwg/fabtests
https://github.com/ofiwg/fabtests
http://ofiwg.github.io/libfabric/
http://ofiwg.github.io/libfabric/
https://github.com/alpha-group/libfabric-provider-dpa
https://github.com/alpha-group/libfabric-provider-dpa

	RMA Bandwidth
	RMA Latency
	Message Queue Interface
	Bibliography

