
OpenFabrics Alliance
Innovations in HPC Software Infrastructure

Rocky, Apptainer, Warewulf, and Fuzzball / HPC-2.0

c

CIQ believes in
constant and

never-ending growth.
We are growing fast

and looking for
like-minded people
with an unwavering
passion for always

doing better for
ourselves and others.

Growing
Our passion is to always

do better. Always
provide more value.

Always drive intelligent
innovation. Always
provide what the

customer & community
needs.

Improving

c

Innovating software
infrastructure solutions

for extreme
performance and scale,

including service
models designed to

meet the needs of your
organization.

Empowering

ROCKY LINUX APPTAINER WAREWULF FUZZBALL

CIQ IS…
Global Hybrid Optimized
Software Infrastructure

Infrastructure-2.0

Community Enterprise Linux

Rocky Linux

As CentOS comes to its end of life, Rocky Linux is there as the natural
successor. By design it is a freely available, community driven,
bug-for-bug compatible version of Enterprise Linux.

Rocky Linux is quickly becoming the dominant operating system for the
enterprise & HPC.

Community Enterprise Linux

Rocky Linux

● Community Enterprise Linux: The Rocky Enterprise Software Foundation is designed to be
a community driven, controlled, and architected OS that will stand the test of time.

● Compatibility: Rocky Linux is 100% compatible with Enterprise Linux which makes it a simple,
drop-in solution.

● Stability: A community of vested individuals, organizations and enterprises of every shape and
size provides True Stability.

● Every Cloud, Every OEM, Every ISV: Our vision from the beginning is to have every cloud,
every OEM, every component and every ISV vested, compatible and partnering for the good of
everyone.

● The Ethos of CIQ & The Name of Rocky: CIQ is committed to empowering everyone to
do what they do great. Rocky McGaugh, CentOS co-founder and namesake of Rocky Linux, was
great at Linux and it is important that everyone know their contributions make a difference in this
world.

Rocky Linux is all about
security and compliance with
accreditations like CIS, Nessus,

RESF Secure Boot, and CIQ
sponsoring FIPS certification.

Compliant
The Rocky Enterprise Software

Foundation (RESF) is the
organization behind Rocky

Linux, community led,
supported, and maintained.

Open Source
Rocky Linux is designed to be

100% compatible with the
Enterprise Linux family of

distributions

Compatible

Features

Rocky Linux
Growth

Already over 6%
of enterprise
infrastructure

Google + CIQ
Supports Rocky

Linux

Tens of thousands
of community

members

Connections to EPEL From Community
Enterprise Linux Distributions

“Among all respondents,...

7.7% indicated Rocky Linux was a “primary” operating system and 12.9% “secondary.”

That gives Rocky Linux a presence among more than one in five respondents.”
– Intersect360 Research, 2022

Rocky Linux was first released in June, 2021

In less than a year…

Usage in HPC is Even Higher!

https://www.advancedclustering.com/centos-migration/

Apptainer / Singularity
Containers for HPC As Docker brought containers into

enterprise, Singularity brought

containers into HPC with a

containerization strategy that just

works for HPC architectures, security

models, and use-cases.

Now Singularity is part of the Linux

Foundation and re-released under a

new name for the open source

project, Apptainer.

Kurtzer founded Singularity in
2015, and since then, it has risen
to being one of the most utilized
tools in HPC.

It has now been moved into the
Linux Foundation and renamed
to Apptainer.

CIQ, is the official commercial
support arm of Apptainer.

Warewulf
Operating System Imaging and Provisioning

Warewulf is a bare metal, stateless,

open source cluster provisioning

solution to facilitate the creation and

operating system management of large

quantities of hardware resources.

Kurtzer founded Warewulf in 2001, and it
has become the most successful and long
lived cluster management solution in HPC.

The project lives on today, with Kurtzer still
leading the effort as it has evolved to
become the core of OpenHPC, a joint Intel
and Linux Foundation project.

Warewulf today provisions containers to
bare metal servers statelessly.

Fuzzball / HPC-2.0
Cloud Native, Federated, Compute Orchestration

Traditional HPC (legacy)

Network

User’s workstations

Controlling services
(master node)

Lots of compute nodes

ssh> ssh> ssh>
The standard HPC cluster architecture today is a near 30 year old design (the “Beowulf”) generally consisting of:

● Controlling services: batch scheduling, login/interactivity, ssh, etc.
● Shared storage for: data, applications, output, etc.
● Private cluster network(s) to connect all compute and storage
● Compute nodes

We have learned to scale up this architecture massively to meet the needs from a
simple system to approaching exascale

Nearly Every HPC System Today is Based on a Legacy Architecture

HPC-2.0 Driving Forces
1. HPC: Use-cases are getting more complicated

2. Pandora’s Container: Containers have opened the door to the benefits of HPC modernization and cross pollination with enterprise, cloud, and

hyperscale capabilities

3. Job Diversity: We are seeing a much greater breadth of applications, requirements, and dependencies

4. Usage Models: “SSH is for system administrators, not users” -- there are many desires to get users off of the systems and instead working through

controlled and monitored APIs and IAM policies

5. Cloud: There has been a consistent and constant push for cloud/multi-cloud and distributed computing

6. Supply Chain Security: Due to the increase in supply chain exploits, security, confidence, and integrity is of the utmost importance from companies

to executive orders

7. Democratization: Consumers of HPC (including non-traditional HPC users) are becoming more interested in the production, velocity, and utility of

HPC, rather than software engineering

8. Enterprise Computing: Organizations who have never considered HPC before are now becoming consumers of HPC and HPC-like capabilities and

refuse to build a “legacy” Beowulf architecture

A Cloud Scale Hybrid HPC System

Network Switch

Control Plane

Storage

Composable Resources

GPUs, Disaggregated
Memory, FPGAs, Direct

Network, etc.

100+ Compute Nodes

HPC systems today are flat and monolithic; cloud
scale systems are not designed this way to make

better use of resources, distribution, and scale.

To build a Hyperscale HPC system, we would start
from the basic building blocks and work upward.

The single cluster building block:

“Hyper-Scalable Unit” (HSU)

Scaling over 100,000 fully composable x86 nodes

>1,000 HSU Racks
● Geographically Distributed Resources
● Data Sharded Globally
● Massive Distributed Job Sources (users)
● Broad Job Diversity
● Rich IAM Policies
● API Controlled
● CI/CD Integration
● Federated
● Data Management Policies
● Cloud and Onprem Integration

While most people don’t need a system this big, many of these capabilities can transform HPC
into a modern computing platform that everyone can use!

HPC-2.0 Additional Features and Capabilities
● Traditional HPC: Supports and optimized for typical HPC workloads

● Enterprise Computing: Also designed for AI/ML, ML-ops, as well as compute and data driven analytics

● Performance: Get totally out of the way, enable parallelization, and ensure micro-architecture optimization

● Scale: The system must support not only horizontal and vertical scaling, but also “Z-axis scaling” (meta-orchestration)

● Data Management: Automatic staging/unstaging of data according to data locality, mobility, gravity, and security

● Composable Workflows: Workflows consist of job graphs, data, dependencies, and fully composable

● Advanced Federated Scheduling and Orchestration: Driven by an intelligent AI enabled policy engine

● Interface Forwarding: JupyterHub, Remote desktops, VSCode, Remote debugging/profiling, Matlab

● Cloud Integration: Multi-cloud computing and/or bursting model with automatic elastic scaling up and down

● Security: Credentials, users, access is all distributed and managed by the system via IAM policies

● Auditing/Compliance: All workflows and resources are 100% auditable, reproducible, and policy controlled

● API Driven: Enterprises don’t want individuals having local Unix accounts on resources (SSH is so 1990’s)

While an astute HPC system engineer can build some of these things on top

of traditional HPC, much of this is out of alignment and thus adds layers of

indirection and complexity

While enterprise orchestration systems can do some of this, they don’t

generally meet the needs of modern HPC where data awareness, advanced

resource allocation, and rich policy controls are required.

We need to cross-pollinate and innovate

This Doesn’t Exist…

So We Built It.

Fuzzball: Workflows
Workflows need to support three primary aspects:

1. Data/Volumes: All necessary input, output, configuration, and
container data must be defined so Fuzzball can properly
manage all data, volumes, and access security within a
composed system

2. Compute: Each job step is defined within an acyclic graph and
runs within a defined container and supports arrays,
parallelization, and dependencies

3. Resources: Any resource dependencies for a workflow and/or
jobs (e.g. GPUs, memory, cores/sockets) are defined such that the
workflow can be scheduled to compute resources as well as
federated clusters and auto-scaling cloud resources

With this information, we can develop completely composable compute
environments on demand for each pipeline, and those workflows will be
orchestrated to the most efficient resources in an automated manner.

User’s Workflow

Fuzzball: Orchestrate

Rocky Enterprise Linux

Warewulf Provisioning

Fuzzball Substrate

User’s Workflow

Kubernetes: Rancher, OpenShift,
RobinIO, IQube, etc..

Fuzzball Orchestrate

Jo
b

Jo
b

Jo
b

Jo
b

In
g

re
ss

E
g

re
ss

Volumes

Fuzzball Micro-Services

Workflow engine

Data Mover

Image Service

Volume Manager

Job Scheduler

Data Lake

Rocky Enterprise Linux

CI/CD

Network

Management Cluster (1-10s of nodes) Compute Cluster (10s-1000s of nodes)

A Fuzzball cluster allows users to submit workflows to the Fuzzball Orchestration services, which then
manages the data, container image management, and volumes and then submits the job graph to the
scheduler to reserve resource space on the compute resources. The jobs are run via Fuzzball Substrate
service which manages those workflows on thousands of compute nodes!

Fuzzball: Federate Fuzzball Federate allows us to scale out and unite Fuzzball clusters at massive scale into a single
seamless platform for users and CI/CD to interact with over geographically distributed sites and
clouds.

On-Premise 1
Cluster 1

On-Premise 1
Cluster 2

On-Premise 2
Cluster ...N

User’s Workflow

Internet

Federated Meta-Orchestration: Orchestrating Fuzzballs across datacenters, geographies, and clouds is made possible by the Ctrl Cloud. Workflows
are ingested into the Ctrl Cloud as they would be to a single Fuzzball cluster and allows for absolutely transparent hybrid infrastructure.

Fuzzball Federate

Distributed Data Lake

CI/CD

...

Fuzzball: UI Unified Common Interfaces to Simplify
Workflow Development and Users

Unifying the experience across clouds, sites, clusters, and nodes while
maintaining advanced numa level node placement of CPUs, GPUs,

FPGAs, IPUs, etc

Fuzzball: CLI

$ fuzzball context create cloud fuzzball.cluster:443

$ fuzzball context list
ACTIVE NAME ADDRESS
* cloud fuzzball.cluster:443
 demo demo.cluster:7331

$ fuzzball context use demo
Configuration for "demo" now in use.

$ fuzzball workflow start counter-demo ./counter.yaml
Workflow “counter-demo” started.

$ fuzzball workflow list
NAME | STATUS | STARTED
counter-demo | Started | 2022-02-01 12:02:28PM

$ fuzzball workflow attach counter-demo counter_job
22
23
...

$ fuzzball workflow exec --tty counter-demo counter_job /bin/sh
Fuzzball> ps aux
...

Fuzzball is 100% API driven; users don’t use SSH

or obtain access to a non-secured container or VM instance.

This is an example of the Fuzzball CLI which runs locally on the user’s or

admin’s workstation. Other interfaces are in development.

Fuzzball: Workflows

version: v1

jobs:
 task-sleeper:
 image:
 uri: docker://alpine:latest
 command: ["/bin/sleep", "$FB_TASK_ID"]

 policy:
 timeout:
 execute: 2m
 retry:
 attempts: 1

 resource:
 cpu:
 cores: 1
 affinity: NUMA
 memory:
 size: 1GB

 task-array:
 start: 1
 end: 32
 concurrency: 8

Jobs within a workflow are highly extensible acyclic graphs, and within

each individual job, you can apply arrays and dependencies to create

needed job shapes to achieve very complex tasks.

Task Arrays

Fuzzball: Workflows

version: v1

jobs:
 hello:
 image:
 uri: docker://mpi_example:latest
 command: ["hello-mpi"]

 policy:
 timeout:
 execute: 20m
 retry:
 attempts: 1

 resource:
 cpu:
 cores: 2
 affinity: NUMA
 memory:
 size: 1GB

 mpi:
 nodes: 64
 implementation: openmpi

Fuzzball is fully MPI aware and manages the multi-node wire-up for

multiple MPI implementations as well as Infiniband and advanced numa

architecture job placement.

MPI

Fuzzball: Workflows

version: v1

volumes:
 v1:
 type: PERSISTENT
 namedVolume: default

jobs:
 touch:
 image:
 uri: docker://alpine:latest
 command: [“/bin/touch”, “/volume/foo”]

 mounts:
 v1:
 location: /volume

 test:
 image:
 uri: docker://alpine:latest
 command: [“/bin/test”, “-f”, “/volume/foo”]

 mounts:
 v1:
 location: /volume

 requires: [touch]

Persistent volumes indicate a volume that is configured on a specific

resource where the data is already staged and available (e.g. genomic,

astrophysics, etc.).

The system administrator can make these volume available as a read-only or

read-write depending on IAM policies.

Persistent Volumes

Fuzzball: Workflows

version: v1
jobs:
 run-hpl-ai:
 image:
 uri: docker://nvcr.io/nvidia/hpc-benchmarks:21.4-hpl
 secrets:
 username: $oauthtoken
 password: ${{ secret "path/to/ngc-secret" }}$

 command: [hpl.sh, --xhpl-ai, --config, dgx-a100, --dat, /workspace/hpl-ai-linux-x86_64/sample-dat/HPL-dgx-a100-1N.dat]

 resource:
 cpu:
 cores: 128
 affinity: NUMA
 memory:
 size: 2000GB
 by-core: false
 devices:
 nvidia.com/gpu: 8
 mpi:
 nodes: 1
 implementation: openmpi

This workflow is the HPL-AI benchmark from Nvidia and it

confirms the expected performance on Nvidia DGX A100.

Also, notice the embedded secrets and credentials that Fuzzball

supports internally.

Secrets and GPUs

Fuzzball: Workflows

version: v1
jobs:
 mine-ethereum:
 image:
 uri: docker://registry.gitlab.com/workflows/trex-miner:docker-stable
 secrets:
 username: gmk
 password: ${{ secret "users/user/gitlab/PAT" }}$
 command: ["/bin/sh", "-c", "./ETH-ethermine.sh"]
 network:
 isolated: true
 cwd: /trex
 policy:
 timeout:
 execute: 5m
 resource:
 cpu:
 cores: 2
 affinity: NUMA
 memory:
 size: 12GB
 devices:
 nvidia.com/gpu: 1

Fuzzball easily supports high level of job and workflow diversity.

This is an example of Ethereum cryptocurrency mining using a

T-Rex container that was built and updated using a private GitLab

CI pipeline.

Ethereum Mining / T-Rex

Fuzzball: Workflows

version: v1
volumes:
 v1:
 type: EPHEMERAL
 ingress:
 - source:
 uri: https://lammps.sandia.gov/inputs/in.lj.txt
 destination:
 uri: file://in.lj.txt

jobs:
 run-lammps:
 image:
 uri: docker://nvcr.io/hpc/lammps:29Sep2021
 command: [lmp, -k, on, g, 1 -sf, kk, -pk, kokkos, cuda/aware, on, neigh, full, comm, device, binsize, 2.8, -var, x, 8, -var, y, 4, -var, z, 8, -in, /data/in.lj.txt]
 cwd: /data

 resource:
 cpu:
 cores: 1
 affinity: NUMA
 memory:
 size: 12GiB
 by-core: false
 devices:
 nvidia.cpm/gpu: 1

 mounts:
 v1:
 location: /data

 mpi:
 nodes: 32
 implementation: openmpi

By Changing these two lines, you can go from

Nvidia/CUDA to AMD/ROCM (or other GPU

implementation) and Fuzzball will locate and execute on

the right hardware (if it exists) to drive optimal TCO.

Breaking GPU Vendor Lock-in

Fuzzball: Workflows

version: v1
jobs:
 jupyter:
 image:
 uri: docker://jupyter/minimal-notebook
 command: ["jupyter", "notebook", "--port", "8888", "--no-browser", "--allow-root"]
 network:
 isolated: true
 resource:
 cpu:
 cores: 16
 affinity: NUMA
 memory:
 size: 256GB
 by-core: false
 devices:
 nvidia.com/gpu: 1

Absolute native integration with graphical Jupyter notebooks, remote desktop
virtualization, or any other port forwarding use-cases:

$ fuzzball workflow start jupyter-notebook.yaml
Workflow Started with id fae7c506-cbdc-4ab1-80fd-5167a5f6a250

$ fuzzball workflow log fae7c506-cbdc-4ab1-80fd-5167a5f6a250 | tail -n 1
jupyter | or http://127.0.0.1:8888/?token=8c862dfd9c0beaebedc8bbc64f5d17f23af36d3f8d0b6dad

$ fuzzball workflow port-forward fae7c506-cbdc-4ab1-80fd-5167a5f6a250 jupyter 8888:8888
2021/08/18 13:54:52 Listening on 127.0.0.1:8888

Jupyter / Port Forwarding

OpenFabrics Alliance
Innovations in HPC Software Infrastructure

Rocky, Apptainer, Warewulf, and Fuzzball / HPC-2.0

