
OFMF Eventing
Michele Gazzetti (IBM Research Europe)
Christian Pinto (IBM Research Europe)

Agenda

1. Overview on Redfish subscriptions and events
2. OFMF/Agent subscription diagram (draft)
3. Gaps and Future steps

Resource Overview
• Event Service: contains properties for managing event subscriptions and generates the events sent to subscribers.

• Has links to the actual collection of subscriptions (event destinations).
• To subscribe, a clients POST to this collection specifying the events of interest
• Contains attributes such as: status, retry information, etc..

• Event Destination: defines the target of an event subscription. This includes:
• The list of resources or resource types of interest for the subscriber
• The URI of the destination event receiver.

• Events: The message sent on the event destination, which is subscribed to the event. Includes:
• data about events
• descriptions
• severity,
• message identifier to a message registry that can be accessed for further information

• Message Registries: schema describing all possible messages generated. These are
• Messages are indexed by keys (MessageId)
• Each message entry describes:

• severity,
• Number, type and descriptions of the arguments. (these are variables used when rendering the message)

• Each message registry has an Owning entity. This is the organization/company that publishes the message registry.

Redfish Eventing: https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf
Redfish Resource and Schema guide: https://www.dmtf.org/sites/default/files/standards/documents/DSP2046_2022.2.pdf

https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf

Resource Overview
• Event Service: contains properties for managing event subscriptions and generates the events sent to subscribers.

• Has links to the actual collection of subscriptions (event destinations).
• To subscribe, a clients POST to this collection specifying the events of interest s
• Contains attributes such as: status, retry information, etc..

• Events: The message sent on the event destination, which is subscribed to the event. Includes:
• data about events
• descriptions
• severity,
• message identifier to a message registry that can be accessed for further information

• Message Registries: schema describing all possible messages generated. These are
• Messages are indexed by keys (MessageId)
• Each message entry describes:

• severity,
• Number, type and descriptions of the arguments. (these are variables used when rendering the message)

• Each message registry has an Owning entity. This is the organization/company that publishes the message registry.

• Event Destination: defines the target of an event subscription. This includes:
• The list of resources or resource types of interest for the subscriber
• The URI of the destination event receiver.

Redfish Eventing: https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf
Redfish Resource and Schema guide: https://www.dmtf.org/sites/default/files/standards/documents/DSP2046_2022.2.pdf

https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf

Event
{

"@odata.type": "#Event.v1_7_0.Event",
"Id": "1",
"Name": "Event Array",
"Context": "ContosoWebClient",
"Events": [{

"EventType": "Other",
"EventId": "4593",
"Severity": "Warning",
"Message": "A cable has been removed from network adapter '1' port '1'.",
"MessageId": "NetworkDevice.1.0.CableRemoved",
"MessageArgs": ["1", "1"],
"OriginOfCondition": {

"@odata.id": "/redfish/v1/Systems/1/EthernetInterfaces/1”
},
"LogEntry": {

"@odata.id": "/redfish/v1/Managers/BMC/LogServices/EventLog/Entries/532"}
}]

}

Message and related severity
level are defined in the
Message Registry.
MessageArgs are positional
argument substituted before
the sending of the message

Resource
generating
the event

Note: the event can be
processed programmatically
using MessageId and
MessageArgs. But we can
fetch the new resource state
by querying the associated
Redfish endpoint reported in
OriginOfCondition

Subscribe to resources by type

{

"@odata.context":

"/redfish/v1/$metadata#EventDestination.EventDestination",
"@odata.id": "/redfish/v1/EventService/Subscriptions/1",
"@odata.type": "#EventDestination.v1_0_0.EventDestination",
"Id": "1",
"Name": "EventSubscription 1",

"Destination": https://10.1.1.1:443,

"Protocol": "Redfish",

"Context": "Test_Context”,

”ResourceTypes" : [”ComputerSystem”, ”Memory”,…,]

}

Resource types
(schema names) that
correspond to the
OriginofCondition

https://192.168.0.2/

Subscribe to all subordinate resources

{

"@odata.context":

"/redfish/v1/$metadata#EventDestination.EventDestination",
"@odata.id": "/redfish/v1/EventService/Subscriptions/1",
"@odata.type": "#EventDestination.v1_0_0.EventDestination",
"Id": "1",
"Name": "EventSubscription 1",

"Destination": https://10.1.1.1:443,

"Protocol": "Redfish",

"Context": "Test_Context”,

"OriginResources" : ["/redfish/v1/Fabric/{FabricId}"],

" SubordinateResources ": true,

}

resources for which the
service sends only
related events

If true, sends events
related to OriginResoures
and all their subordinates.

https://192.168.0.2/

Agent’s Subscriptions at boot (step 1)

• Agent starts with pre-existing
EventDestination reporting:

• Destination: OFMF Endpoint
• ResourceTypes: [“Fabric”]

• Result:
• The Agent is aware of the OFMF

server endpoint
• At boot the Agent notifies the

presence of a new Fabric via an Event
• At OFMF receives an Event reporting

the creation/enablement of a new
Fabric

• The OFMF can scan the Agent’s
Redfish tree and collect information
on the new resources.

root

Event
Service

Subscri
ptions 1

"@odata.context":
"/redfish/….EventDestination",
"@odata.id":

…/EventService/Subscriptions/1",
"@odata.type": ….EventDestination",
"Id": "1",
"Name": "EventSubscription 1",
"Destination": https://ofmf.infa:443,
"Protocol": "Redfish",
”ResourceTypes" : [”Fabric”]

https://192.168.0.2/

OFMF/Agent subscription diagram

Note: OFMF is a subscriber
for this scenario. In some
cases, the OFMF can be a
publisher of events. For
instance, external users can
subscribe to the OFMF to
receive hw infrastructure
related events.

All cases follow the Redfish
Eventing specification.

Agent’s Subscriptions at boot (step 2)

root

Event
Service

Subscri
ptions 1

"@odata.context":
"/redfish/….EventDestination",
"@odata.id":

…/EventService/Subscriptions/1",
"@odata.type": ….EventDestination",
"Id": "1",
"Name": "EventSubscription 1",
"Destination": https://ofmf.infa:443,
"Protocol": "Redfish",
”ResourceTypes" : [”Fabric”]

"@odata.context":
"/redfish/….EventDestination",
"@odata.id":

…/EventService/Subscriptions/1",
"@odata.type": ….EventDestination",
"Id": "1",
"Name": "EventSubscription 1",
"Destination": https://ofmf.infa:443,
"Protocol": "Redfish",
"OriginResources" :

["/redfish/v1/Fabric/F1"],
" SubordinateResources ": true,

2

Notify the OFMF of any event generated by
resources in the Fabric sub-tree

Notify the OFMF of any event related the
Fabric objects

https://192.168.0.2/
https://192.168.0.2/

Events handling at runtime

Note: step 8 might be necessary
(or not) depending on the
message comprehensiveness

Gaps and Future steps

1. Formalize events/messages generated during the lifecycle of a Fabric
• (Current Redfish Message Registry Guide can be found in DSP2065)

2. Explore the need to extend/update existing message registries with new
entries related to Fabric events
• Allows us to interpret MessageArgs and retrieve useful metadata information

3. Extend schema with information about the Agent (if necessary).
4. Explore pros/cons of various approaches to asynchronous event handling

1. Is the current EventService scalable enough?
2. Do we need third-party solutions? (persistency, scalability, ease of integration,

etc..)
• Message brokers (i.e. RabbitMq)
• K/V Stores (i.e. Redis,Etcd,…)
• Etc..

Questions

