OFMF Eventing

Michele Gazzetti (IBM Research Europe)
Christian Pinto (IBM Research Europe)

Agenda

1. Overview on Redfish subscriptions and events
2. OFMF/Agent subscription diagram (draft)
3. Gaps and Future steps

Resource Overview

Event Service: contains properties for managing event subscriptions and generates the events sent to subscribers.
* Has links to the actual collection of subscriptions (event destinations).

* To subscribe, a clients POST to this collection specifying the events of interest
* Contains attributes such as: status, retry information, etc..

Event Destination: defines the target of an event subscription. This includes:
* The list of resources or resource types of interest for the subscriber
* The URI of the destination event receiver.

Events: The message sent on the event destination, which is subscribed to the event. includes:
* data about events
* descriptions
* severity,
* message identifier to a message registry that can be accessed for further information

Message Registries: schema describing all possible messages generated. These are
* Messages are indexed by keys (Messageld)
* Each message entry describes:
* severity,
* Number, type and descriptions of the arguments. (these are variables used when rendering the message)
* Each message registry has an Owning entity. This is the organization/company that publishes the message registry.

Redfish Eventing: https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf
Redfish Resource and Schema guide: https://www.dmtf.org/sites/default/files/standards/documents/DSP2046_2022.2.pdf

https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf

Resource Overview

Event Service: contains properties for managing event subscriptions and generates the events sent to subscribers.
* Has links to the actual collection of subscriptions (event destinations).

* To subscribe, a clients POST to this collection specifying the events of interest s
* Contains attributes such as: status, retry information, etc..

Events: The message sent on the event destination, which is subscribed to the event. includes:
* data about events
* descriptions
* severity,
* message identifier to a message registry that can be accessed for further information

Message Registries: schema describing all possible messages generated. These are
* Messages are indexed by keys (Messageld)

* Each message entry describes:
* severity,
* Number, type and descriptions of the arguments. (these are variables used when rendering the message)
* Each message registry has an Owning entity. This is the organization/company that publishes the message registry.

Event Destination: defines the target of an event subscription. This includes:
* The list of resources or resource types of interest for the subscriber
* The URI of the destination event receiver.

Redfish Eventing: https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf
Redfish Resource and Schema guide: https://www.dmtf.org/sites/default/files/standards/documents/DSP2046_2022.2.pdf

https://www.dmtf.org/sites/default/files/Redfish%20School%20-%20Events_0.pdf

Event

Note: the event can be
processed programmatically
using Messageld and
MessageArgs. But we can —
fetch the new resource state
by querying the associated
Redfish endpoint reported in

OriginOfCondition

}

"@odata.type": "#Event.vi_7_0.Event",
“Id": "1",
"Name": "Event Array",
"Context": "ContosoWebClient",
"Events": [{

"EventType": "Other",

"Eventld": "4593",

Message and related severity
level are defined in the
Message Registry.
MessageArgs are positional
argument substituted before
the sending of the message

L

""Severity": "Warning",

"MessageArgs": ["1", "1"],

""Message": "A cable has been removed from network adapter '1' port '1'.",
""Messageld": "NetworkDevice.1.0.CableRemoved",

"OriginOfCondition™ {

}

"@odata.id": "/redfish/v1/Systems/1/Ethernetinterfaces/1”

"LogEntry": {

Resource

"@odata.id": "/redfish/v1/Managers/BMC/LogServices/EventLog/Entries/532"} | generating

}]

the event

Subscribe to resources by type

"dodata.context":

"/redfish/vl/Smetadata#EventDestination.EventDestination",

"Qodata.id": "/redfish/v1l/EventService/Subscriptions/1",
"Qodata.type": "#EventDestination.vl 0 0.EventDestination",
nTg" "1", -

"Name": "EventSubscription 1",

"Destination": https://10.1.1.1:443,

"Protocol": "Redfish",

"Context": "Test Context”,

"ResourceTypes" : [“"ComputerSystem”,

"Memory”, ..,]

/

Resource types
(schema names) that
correspond to the
OriginofCondition

https://192.168.0.2/

Subscribe to all subordinate resources

"dodata.context":

"/redfish/vl/Smetadata#EventDestination.EventDestination",

"Qodata.id": "/redfish/v1l/EventService/Subscriptions/1",

"@odata.type": "#EventDestination.vl 0 O.EventDestination",

"Id": "1",

"Name": "EventSubscription 1",

"Destination": https://10.1.1.1:443, resources for which the

"Protocol™: "Redfish", service sends only
related events

"Context": "Test Context”, «/”////////’
"OriginResources" : ["/redfish/vl/Fabric/{FabricId}"],

" SubordinateResources ": true,

\\\\ If true, sends events
related to OriginResoures

and all their subordinates.

https://192.168.0.2/

Agent’s Subscriptions at boot (step 1)

e Agent starts with pre-existing
EventDestination reporting:

* Destination: OFMF Endpoint
* ResourceTypes: [“Fabric”]

* Result:

 The Agent is aware of the OFMF
server endpoint

* At boot the Agent notifies the
presence of a new Fabric via an Event

* At OFMF receives an Event reporting
the creation/enablement of a new
Fabric

 The OFMF can scan the Agent’s
Redfish tree and collect information
on the new resources.

Event
Service

Subscri

"lodata.context":
"/redfish/...EventDestination",
"@odata.id":

../EventService/Subscriptions/1",
"@odata.type": ...EventDestination",
"Iga". "1",

"Name": "EventSubscription 1",
"Destination": https://ofmf.infa:443,

"Protocol": "Redfish",
"ResourceTypes" : ["Fabric”]

https://192.168.0.2/

OFMF/Agent su

Note: OFMF is a subscriber
for this scenario. In some
cases, the OFMF can be a
publisher of events. For
instance, external users can
subscribe to the OFMF to
receive hw infrastructure
related events.

All cases follow the Redfish
Eventing specification.

oscription diagram

Agent
(Event publisher)

D 1

OFMF
(Event subscriber)
Event: Fabrics.1.x.newFabric
/redfish/v1/Fabric/F1
<
Inspect Agent capabilities
GET /redfish/v1/EventService, ... >
POST EventDestination
subscribe to all subordinate resources under
/redfish/iv1/Fabric/F1 >
Push Events as internal Fabric F1
Redfish sub-tree is constructed
__ -
(.
Synch Redfish tree
GET all subordinate resources under
/redfish/v1/Fabric/F1/Agent/1
e >
g >
g g g »
Redfish subtree /redfish/v1/Fabric/F1 are now in
R sych for both OFMF and Agent _ _ _ _ _ _ _ _

-

Load OFMF Event
Destination

Agent’s Subscriptions at boot (step 2)

"Qodata.context":
"/redfish/...EventDestination",

"@odata.id":
../EventService/Subscriptions/1",
"@odata.type": ...EventDestination",
"Ida": "1",
"Name": "EventSubscription 1",
"Destination": https://ofmf.infa:443,
"Protocol": "Redfish",
"OriginResources"

["/redfish/vl/Fabric}Fln],

" SubordinateResources ": true,

Notify the OFMF of any event generated by
resources in the Fabric sub-tree

Event

Service

Subscri

— (2] ptions

—

"Qodata.context":
"/redfish/...EventDestination",

"@odata.id":
../EventService/Subscriptions/1",

"dodata.type": ...EventDestination",

"Ida": "1",

"Name": "EventSubscription 1",

"Destination": https://ofmf.infa:443,

"Protocol": "Redfish",

"ResourceTypes" ["Fabric”]

Notify the OFMF of any event related the
Fabric objects

https://192.168.0.2/
https://192.168.0.2/

Events handling at runtime

OFMF Agent
(Event subscriber) (Event publisher)
J
: .
' I
-_ e - 1 ------------------------------------ P - - -
Each new change of state from this point forward
Is represented by an Event under the ./Fabric/F1
subtree
7 Event:Fabrics.1.x. EndpointCreated
< /redfish/v1/Fabric/F1/Entrypoint/1

8 | GET /redfish/v1/Fabric/F1/Entrypoint/1

Note: step 8 might be necessary
(or not) depending on the
message comprehensiveness

Gaps and Future steps

1. Formalize events/messages generated during the lifecycle of a Fabric
* (Current Redfish Message Registry Guide can be found in DSP2065)

2. Explore the need to extend/update existing message registries with new
entries related to Fabric events
* Allows us to interpret MessageArgs and retrieve useful metadata information

3. Extend schema with information about the Agent (if necessary).

4. Explore pros/cons of various approaches to asynchronous event handling
1. Isthe current EventService scalable enough?
2. Do V\)/e need third-party solutions? (persistency, scalability, ease of integration,
etc..
* Message brokers (i.e. RabbitMq)

* K/V Stores (i.e. Redis,Etcd,...)
* Etc..

Questions

