	Use-Case Description
	Composability Manager--Assemble System

	Actors
	Composability Manager, Sunfish, Free Pool, Active Pool, Janusgraph database, Resource Control Operations, Authorization Block, Composition Policies

	Description
	Assemble a composed HPC node using resources out of the Free Pool

	Input Data
	Client requirements: CPU architecture, Memory Device Type, Storage Capacity, Storage Type, Accelerator Type, Network Interface Types, best choice for resource selection from Composition Decisions and Policies, available resources from Janusgraph

	Pre Conditions
	OFMF contains a Free pool of Resources, network Agents active

	Post Conditions
	Composed Turing Compatible System from Free Pool, Active Pool incremented by Composed Resources

	Trigger
	Client request for fully Composed Resources

	Normal Flow
	· Is this request for a dynamic expansion to a running allocated server?
· Is this request for dynamic expansion to an unallocated server for batch job allocation?
· Receive Client Requirements
· g.V().has (‘<property>’ to provide appropriate resources from Janusgraph
· GET current Free Pool resources from the Janusgraph database
· Get best choice for resource selection from Decisions and Policies Block
· Create a framework package of allocation requirements, using the Client Requirements, the available Free Pool Resources, and input from the Decisions and Policies Block
· Create JSON
· CPU
· Type of CPU(s)
· Quantity of CPU(s)
· Memory
· Type of Memory
· Amount of Memory
· Storage
· Type of Storage
· Resource endpoints
· What network links are available?
· What networks?
· Aggregated?
· Associate Components with links into the Sunfish-Redfish/Swordfish Tree
· POST Constrained Composable JSON to Sunfish
· Post of Free Resources to /redfish/v1/CompositionService/ResourceZones and /redfish/v1/CompositionService/ResourceBlocks
· POST used resources to Sunfish-Active Resources
· g,addE(‘property’).from vertex to vertex path
· Update vertex and edge information in the Decisions and Policies Block
[bookmark: __DdeLink__1265_1094186678]Return success

	Alternate Flow 1
	· Receive Client Requirements
· .V().has (‘<property>’ to provide appropriate resources from Janusgraph
· Get current Free Pool resources from the Janusgraph database
· Resources don’t exist to fulfill requirements
Return failure

	Alternatie Flow 2
	· Receive Client Requirements
· .V().has (‘<property>’ to provide appropriate resources from Janusgraph
· Get current Free Pool resources from the Janusgraph database
· Resources don’t exist to fulfill requirements, locally
· Get best choice for resource selection from Decisions and Policies Block
· Create a framework package of JSON Constrained requirements, using the Client Requirements and the available Free Pool Resources
· Warning to the client that the requested resources are remote
· Create JSON
· CPU
· Type of CPU(s)
· Quantity of CPU(s)
· Memory
· Type of Memory
· Amount of Memory
· Storage
· Type of Storage
· Resource endpoints
· What network links are available?
· What networks?
· Aggregated?
· Associate Components with links into the Redfish Tree
· POST Constrained Composable JSON to Sunfish
· Post of Free Resources to /redfish/v1/CompositionService/ResourceZones and /redfish/v1/CompositionService/ResourceBlocks
· POST used resources to Active Resources
· Return success

