
RDMA Container Support 

Haggai Eran, Liran Liss 

Mellanox Technologies 



Agenda 

• Containers 101 

• RDMA isolation 

• Namespace support 

• Controller support 

• Putting it all together 

• Status 

• Conclusions 

 
May 12, 2015 #OFADevWorkshop 2 



Containers 101 

• A server-virtualization technology for running multiple 
isolated user-space instances 

• Each instance 
– Has the look and feel of running over a dedicated server 

– Cannot impact the activity of other instances 

• Containers and Virtual Machines (VMs) provide 
virtualization at different levels 

May 12, 2015 #OFADevWorkshop 3 

Hypervisor 

VM1 

OS 

App 

VM2 

OS 

App 

OS 

App App 

Virtual Machines 

Containers 
Server 
virtualization 
 
VM contains 
complete OS 
+ App 

“System call” 
virtualization 
 
Container 
has only App 
+ libraries 



Example: Docker 

• Open platform to build, ship, and run distributed apps 
– Based on Linux container technology 

• Main promise 
– Easily package an application and its dependencies 

• Regardless of the language, tool chain, and distribution 

• Layered images 

• Large application repository 

– Basis for further specialization 

– Deploy on any Server 

• Regardless of OS distribution 

• Regardless of underlying architecture 

– Lightweight runtime 

• Rapid scale-up/down of services 

 

 
May 12, 2015 #OFADevWorkshop 4 

Docker Image 

RH6.5 
OFED-2.4 
OpenMPI 

Math libs 
App 

Lustre 
Base 

layers 

App 

layers 



Linux Containers = 

Namespaces + cgroups 

• Namespaces 
– Provide the illusion of 

running in isolation 

– Implemented for multiple 
OS sub-systems 

• cgroups 
– Restrict resource utilization 

– Controllers for multiple 
resource types 

May 12, 2015 #OFADevWorkshop 5 

Name 
space 

Description 

pid Process IDs 

net Network interfaces, routing tables, and 
netfilter 

ipc Semaphores, shared memory, and message 
queues 

mnt Root and file-system mounts 

uts Host name 

uid User IDs 

Controller Description 

blkio Access to block devices 

cpu CPU time 

cpuset CPU cores 

devices Device access 

memory Memory usage 

net_cls Packet classification 

net_prio Packet priority 

Namespace examples cgroup examples 



Container IP Networking 

• Common models 
– Host (e.g., Mezos) 

– Physical interface / VLAN / 
macvlan 

• Container has global IP 

– Bridge 
• Container has global IP 

– Pod (e.g., GCE) 
• Multi-container scheduling unit 

• Global IP per POD 

– NAT (e.g., Docker) 

– Tunneling 

• Building blocks 
– Network namespaces 

• Interfaces, IP tables, netfilter 

– Virtual networking 
• bridge, ovs, NAT 

• macvlan, vlan, veth 

May 12, 2015 #OFADevWorkshop 6 

br0: bridge 
10.4.0.1/24 

veth 

eth0: veth 
10.4.0.2/24 

eth0: physical 

veth 

eth0: veth 
10.4.0.3/24 



RDMA Isolation Design Goals 

• Simplicity and efficiency 

– Containers share the same RDMA device instance 

– Leverage existing isolation infrastructure 

• Network namespaces and cgroups 

• Focus on application APIs 

– Verbs / RDMACM 

– Exclude management and low-level APIs (e.g., umad, ucm) 

• Deny access using device controller 

– Exclude kernel ULPs (e.g., iSER, SRP) 

• Not directly exposed to applications 

• Controlled by other means (blk_io) 

• Subject for future work 

• Hardware attached interfaces only 

– Support virtual network devices directly attached to hardware: 

• macvlan, IPoIB child interfaces, etc. 

– Do not support arbitrary topologies with ovs / Linux bridge and veths. 

• Subject for future work 

May 12, 2015 #OFADevWorkshop 7 



Namespace Observations 

• Isolating Verbs resources is 
not necessary 
– Only QPNs and RKeys are 

visible on the wire 

– Both don’t have well-known 
names 

• Applications don’t choose them 

– Exception: RoCE requires a 
namespace for L3L2 address 
resolution 

 

• rdmacm maps nicely to 
network namespaces 
– IP addresses stem from network 

interfaces 

– Protocols and port numbers 
map to ServiceID port-spaces 

 

• Namespace determined by 
interface 
– Physical port interfaces of PFs/VFs 

– P_Key child devices 

– Additional child devices on same 
P_Key 

– VLAN child devices 

– macvlan child-devices 

May 12, 2015 #OFADevWorkshop 8 

 
• Associate RDMA IDs with namespaces 
• Maintain isolated ServiceID port-space per 

network namespace 
• RoCE: QP and AH API calls should be 

processed within a namespace context 

Conclusions 



Resource Namespace 

Association 

• RDMA IDs namespaces 

– Used for Binding to ServiceIDs and solicited MAD steering 

(see below) 

– Determined by the process namespace upon creation 

– Matched asynchronously with incoming requests 

– Default to Host namespace for kernel threads 

 

• QP and AH namespaces 

– Used for RoCE L3L2 address resolution 

– Determined by the process namespace during API calls 

– Default to Host namespace for kernel threads 

May 12, 2015 #OFADevWorkshop 9 



ib_cm module rdma_cm module 

Data structures 

May 12, 2015 #OFADevWorkshop 10 

ib_cm_id 
Listener rdma_cm_id 

Network namespace 

TCP port space IDR 
UDP port space IDR 

… 



CM REQ/SIDR REQ Resolution 

May 12, 2015 #OFADevWorkshop 11 

ib_cm 

Host NS 

Is RDMA 
CM? 

YES NO 

CM MADs 

ib_core 

rdma_cm 

Match ServiceID 

Lookup NS 

 
Match netdev by 

<IB device, port, VLAN/P_Key, IP> 
 

Get netdev NS 



RDMA cgroup Controller 

• Governs application resource utilization per 

RDMA device 

– For a process or a group of processes 

 

• Possible controlled resources 

– Opened HCA contexts 

– CQs, PDs, QPs, SRQs, MRs 

– Service Levels (SLs) and User Priorities (UPs) 

• Can’t mark individual packets in SW… 

May 12, 2015 #OFADevWorkshop 12 



Linux 

Putting it All Together 

May 12, 2015 #OFADevWorkshop 13 

IB HCA 

IB core 

ib_0 
0x8001 
10.2.0.1 

ib_1 
0x8001 
10.2.0.2 

ib_2 
0x8002 
10.3.0.1 

RoCE HCA 

eth0 
11.1.0.1 

eth0.100 
10.4.0.1 

eth0.101 
10.5.0.1 

App A 
listen rdma_id: 

TCP port-space 2000 

Net NS: 1 
cpu: 10% 
QPs: 10 
CQs: 10 

Net NS: 2 
cpu: 20% 
QPs: 50 
CQs: 50 

App B 
listen rdma_id: 

TCP port-space 2000 
 

Net NS: 3 
cpu: 30% 
QPs: 100 
CQs: 100 

App C 



Status 

• RDMA CM namespace support for IB completed 

– May be used with any IPoIB interface or child 

interface 

– Patches sent upstream 

• Got significant review comments in v2 

• Recently submitted v3 

• Coming up 

– RoCE support 

– RDMA cgroup controllers 

May 12, 2015 #OFADevWorkshop 14 



Conclusions 

• Container technology is gaining considerable 

traction 

• The intrinsic efficiency of containers make them 

an attractive virtualization and deployment 

solution for high-performance applications 

– E.g., HPC clouds 

• RDMA container support provides such 

applications access to high-performance 

networking in a secure and isolated manner 

May 12, 2015 #OFADevWorkshop 15 



#OFADevWorkshop 

Thank You 


