
UCX
Unified Communication - X

Framework
Presented by Pavel Shamis

UCX Framework Mission
•  Collaboration between industry, laboratories, and

academia

•  To create open-source production grade
communication framework for data centric and HPC
applications

•  To enable the highest performance through co-
design of software-hardware interfaces

Background
MXM
●  Developed by Mellanox Technologies
●  HPC communication library for InfiniBand

devices and shared memory
●  Primary focus: MPI, PGAS

UCCS
●  Developed by ORNL, UH, UTK
●  Originally based on Open MPI BTL and

OPAL layers
●  HPC communication library for InfiniBand,

Cray Gemini/Aries, and shared memory
●  Primary focus: OpenSHMEM, PGAS
●  Also supports: MPI

PAMI
●  Developed by IBM on BG/Q, PERCS, IB

VERBS
●  Network devices and shared memory
●  MPI, OpenSHMEM, PGAS, CHARM++, X10
●  C++ components
●  Aggressive multi-threading with contexts
●  Active Messages
●  Non-blocking collectives with hw accleration

support

UCX is an Integration of Industry

and Users Design Efforts

UCX Goals
Performance oriented

Optimization for low-software
overheads in communication
path allows near native-level
performance

Community driven

Collaboration between industry,
laboratories, and academia

Production quality

Developed, maintained, tested,
and used by industry and
researcher community

API

Exposes broad semantics that
target data centric and HPC
programming models and
applications

Research

The framework concepts and
ideas are driven by research in
academia, laboratories, and
industry

Cross platform

Support for Infiniband, Cray,
various shared memory (x86-64
and Power), GPUs

Co-design of Exascale Network APIs

Members
Mellanox co-designs network interface and contributes
MXM technology

○  Infrastructure, UD, RC, DCT, shared memory, protocols, integration with OpenMPI/
SHMEM, MPICH

ORNL co-designs network interface and contributes
UCCS project

○  IB optimizations, support for Cray devices, shared memory

NVIDIA co-designs high-quality support for GPU devices
○  GPU-Direct, GDR copy, etc.

IBM co-designs network interface and contributes ideas
and concepts from PAMI

UH/UTK focus on integration with their research platforms

What’s new about UCX?
•  Simple and consistent API

•  Choosing between low-level and high-level API allows easy integration
with a wide range of applications and middleware.

•  Protocols and transports are selected by capabilities and performance
estimations, rather than hard-coded definitions.

•  Support thread contexts and dedicated resources, as well as fine-grained
and coarse-grained locking.

•  Accelerators are represented as a transport, driven by a generic “glue”
layer, which will work with all communication networks.

The UCX Framework

UC-S for Services

This framework provides
basic infrastructure for
component based
programming, memory
management, and useful
system utilities

Functionality:
Platform abstractions, data
structures, debug facilities.

UC-T for Transport

Low-level API that expose
basic network operations
supported by underlying
hardware. Reliable, out-of-
order delivery.

Functionality:
Setup and instantiation of
communication operations.

UC-P for Protocols

High-level API uses UCT
framework to construct
protocols commonly found in
applications

Functionality:
Multi-rail, device selection,
pending queue, rendezvous,
tag-matching, software-
atomics, etc.

High-level Overview

UC-T (Hardware Transports) - Low Level API
 RMA, Atomic, Tag-matching, Send/Recv, Active Message

Transport for InfiniBand VERBs
driver

RC UD XRC DCT

Transport for intra-node host memory communication

SYSV POSIX KNEM CMA XPMEM

Transport for
Accelerator Memory

communucation

GPU

Transport for
Gemini/Aries

drivers

GNI

UC-S
(Services)

Common utilities

UC-P (Protocols) - High Level API
Transport selection, cross-transrport multi-rail, fragmentation, operations not supported by hardware

Message Passing API Domain:
tag matching, randevouze

PGAS API Domain:
RMAs, Atomics

Task Based API Domain:
Active Messages

I/O API Domain:
Stream

Utilities Data
stractures

Hardware

MPICH, Open-MPI, etc. OpenSHMEM, UPC, CAF, X10,
Chapel, etc. Parsec, OCR, Legions, etc. Burst buffer, ADIOS, etc.

Applications

UC
X

Memory
Management

OFA Verbs Driver Cray Driver OS Kernel Cuda

Clarifications
•  UCX is not a device driver

•  UCX is a framework for communications
 Close-to-hardware API layer
 Providing an access to hardware’s capabilities

•  UCX relies on drivers supplied by vendors

Project Management
●  API definitions and changes are discussed

within developers (mail-list, github, conf call)
●  PRs with API change have to be approved

by ALL maintainers
●  PR within maintainer “domain” has to be

reviewed by the maintainer or team member
(Example: Mellanox reviews all IB changes)

Licensing
●  BSD 3 Clause license
●  Contributor License Agreement – BSD 3

based

UCX Advisory Board
•  Arthur Barney Maccabe (ORNL)
•  Bronis R. de Supinski (LLNL)
•  Donald Becker (NVIDIA)
•  George Bosilca (UTK)
•  Pavan Balaji (ANL)
•  Richard Graham (Mellanox Technologies)
•  Sameer Kumar (IBM)
•  Stephen Poole (Open Source Software Solutions)
•  Gilad Shainer (Mellanox Technologies)
•  Sameh Sharkawi (IBM)

UCT (Transport layer) objects
-  uct_worker_h

A context for separate progress engine and communication resources. Can be
either thread-dedicated or shared.

-  uct_pd_h (will be renamed to uct_md_h)
Memory registration domain. Can register user buffers and/or allocate registered
memory.

-  uct_iface_h
Communication interface, created on a specific memory domain and worker.
Handles incoming active messages and spawns connections to remote interfaces.

-  uct_ep_h
Connection to a remote interface. Used to initiate communications.

Out-of-band
Address

Exchange

Entity A

Memory
Domain Worker

Interface

Endpoint

Connect

Entity B

Memory
Domain Worker

Interface

Endpoint

Connect

UCT initialization

UCT memory primitives
-  Register memory within the domain

-  Can potentially use a cache to speedup registration

-  Allocate registered memory.

-  Pack memory region handle to a remote-key-buffer
-  Can be sent to another entity.

-  Unpack a remote-key-buffer into a remote-key
-  Can be used for remote memory access.

UCT communication primitives
-  Not everything has to be supported.

-  Interface reports the set of supported primitives.
-  UCP uses this info to construct protocols.

-  Send active message (active message id)
-  Put data to remote memory (virtual address, remote key)
-  Get data from remote memory (virtual address, remote key)
-  Perform an atomic operation on remote memory:

-  Add
-  Fetch-and-add
-  Swap
-  Compare-and-swap

-  Insert a fence
-  Flush pending communications

UCT data types
-  UCT communications have a size limit

-  Interface reports max. allowed size for every operation.
-  Fragmentation, if required, should be handled by user / UCP.

-  Several data “classes” are supported:
-  “short” – small buffer.
-  “bcopy” – a user callback which generates data (in many cases,

“memcpy” can be used as the callback).
-  “zcopy” – a buffer and it’s memory region handle. Usually large buffers

are supported.

-  Atomic operations use a 32 or 64 bit immediate values.

UCT completion semantics
-  All operations are non-blocking
-  Return value indicates the status:

-  OK – operation is completed.
-  INPROGRESS – operation has started, but not completed yet.
-  NO_RESOURCE – cannot initiate the operation right now. The user

might want to put this on a pending queue, or retry in a tight loop.
-  ERR_xx – other errors.

-  Operations which may return INPROGRESS (get/atomics/zcopy)
can get a completion handle.
-  User initializes the completion handle with a counter and a callback.
-  Each completion decrements the counter by 1, when it reaches 0 – the

callback is called.

UCT API

Currently supported transports
-  Shared memory

-  SystemV
-  CMA
-  KNEM

-  uGNI (RMA API and ATOMICS)
-  IB

-  RC
-  UD (still WIP)
-  CM (for wireup only)

UCP (protocol layer)
-  Mix-and-match transports, devices, and operations, for optimal

performance.
-  Based on UCT capabilities and performance estimations.

-  Enforce ordering when required (e.g tag matching)

-  Work around UCT limitations:

-  Fragmentation
-  Emulate unsupported operations
-  Expose one-sided connection establishment

UCP objects
-  ucp_context_h

A global context for the application. For example, hybrid MPI/SHMEM library may
create on context for MPI, and another for SHMEM.

-  ucp_worker_h
Communication resources and progress engine context. One possible usage is to
create one worker per thread.

-  ucp_ep_h
Connection to a remote worker. Used to initiate communications.

Out-of-band
Address

Exchange

Entity A

Context

Worker

Endpoint

Entity B

Context

Worker

UCP initialization

UCP communications
-  Tag-matched send/receive

-  Blocking / Non-blocking
-  Standard / Synchronous / Buffered

-  Remote memory operations
-  Blocking put, get, atomics
-  Non-blocking – TBD

-  Data is specified as buffer and length
-  No size limit
-  May register the buffer and use zero copy

UCP API

Preliminary Evaluation (UCT)

��
��
��
��
��
���
���
�	�
�
�
���
���

�� 	� �� �� ���
	� ���

�
��
��
��
��
��
��
	�
��

�
�

����������������

���������	�
����
���������	�����
���������	�
����
���������	�����

����
����
����
����
����
����
����
��	�
��
�
����
����
����

�� �� �� �� �
� ���
��

��
��
��
��
	

��

�������������������

���������	�
����
���������	�
����
���������	�
����

���������	�����
���������	�����
���������	�����

Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B. Baker, Oscar Hernandez, Yossi Itigin,
Mike Dubman, Gilad Shainer, Richard L. Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald
Becker, Duncan Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George Bosilca, Aurelien Bouteiller, “UCX:
An Open Source Framework for HPC Network APIs and Beyond”, HOTI 2015

��

��

��

��

��

��

��

	�

�� ��� �
 ��
 ��

�
��
��
��
��
	
�
�
�
�

�����������������

��������	
������
��������	
�����
��������	
������
��������	
�����

Acknowledgments

UCX
Unified Communication - X

Framework

WEB:
www.openucx.org

 Mailing List:
https://elist.ornl.gov/mailman/listinfo/ucx-group

ucx-group@elist.ornl.gov

