
Dan Jurgens

Sept 23, 2015

SELinux support for RDMA

© 2015 Mellanox Technologies 2 - Mellanox Confidential -

Introduction

 SELinux is a Mandatory Access Control (MAC) scheme for Linux
• Central policy is loaded upfront into the kernel

- Standard policies are typically provided by the Linux distribution

• Applications cannot override or modify this policy

 Benefits
• Differentiate a user from the applications that the user runs

• Restrict application access only to what is required to perform its task

• Allow granular policy segregation

• Example

- Run 2 instances of a Web Server: “top-secret” and “standard”

- Each server can only

 Receive traffic from specific network interfaces

 Open sockets on specific ports

 Serve files from specific directories

 Communicate only with specific peer addresses

 Type enforcement is the main security mechanism used by SELinux

© 2015 Mellanox Technologies 3 - Mellanox Confidential -

Type Enforcement (TE)

 Applies to all user-visible kernel entities
• E.g., processes, files, IPC objects, sockets

 Each entity is associated with:
• A security descriptor

- Assigned upon creation

- May be modified based on policy

• A class and a set of operations

- Stems from the type of object

- E,g., a socket can send() and recv()

 TE defines what a <subject> can do on an <object> based on their security descriptors
• Specified by a policy of access rules

• Enforced when accesses are made

 Security descriptors
• Identify the user, role, type, and optionally security level+class of an object

• Specified by a variable-length string: “user:role:type[:level]”

 Policy rules
• Specify which source tag can access which target tag and for what operations

- E.g., “allow source_t target_t:class { [op1] [op2] … }”

• Typically, only the ‘type’ (a.k.a ‘Domain’) portion of the tag is mentioned

© 2015 Mellanox Technologies 4 - Mellanox Confidential -

SELinux Network Security

 Network object labeling
• Interfaces

- E.g., eth2

- Used in the past for packet tagging
 Today packets are tagged by network traffic labeling

• Nodes
- Label IPv4/6 addresses and network masks

• Ports
- Label TCP/UDP port numbers

• Sockets
- Usually inherit the security descriptor of the creating process

 Network traffic labeling
• Internal labeling

- Tag traffic according to local OS policies

- The de-facto standard is SECMARK
 Extends standard iptables/netfilter to mark packets with

security descriptors

• Labeled networking
- Labels on the wire

- Each local system interprets the label to enforce is MAC
policies

- Supported schemes
 Labled IPSec

 CIPSO

 SELinux network policies define

• What a process can do with network objects

- For example: allow ‘ftp_t’ (the FTP process) to bind a

socket to ‘ftp_data_port’ (TCP port 20)

• What traffic a process can send/receive

 Policy enforcement

• Object policies are enforced during system calls

• Traffic policies are enforced per-packet

© 2015 Mellanox Technologies 5 - Mellanox Confidential -

RDMA Network Objects

 Verbs objects (PDs, QPs, CQs, SRQs, MRs, etc.)

• Do not have well-known names

- The user doesn’t even control them

• Observation: granular MAC control policies for Verbs resources doesn’t make much sense

- E.g., allow a process to modify QP253 to RTR???

 RDMA-CM objects (RDMA IDs)

• Similar to sockets

- ServiceID port-spaces map TCP/UDP ports spaces

- Similar semantics and operation

• However

- Actual data path governed by Verbs objects

- There are RDMA applications that don’t use RDMA-CM at all

• Observation: RDMA-CM security policies may provide socket-like MAC control for CM service IDs

- However, it does not provide a stronger security model

- Simple policies are still required for P_Key enforcement

© 2015 Mellanox Technologies 6 - Mellanox Confidential -

RDMA Network Objects (cont.)

 Interface objects (RDMA devices and ports)

• Associated with every communication end-point (QP)

• Observation: may be used for object-based policies

- But benefit is not clear

- Network labeling (see below) is a much better alternative

 Node objects (GIDs)

• May be treated similarly to IPv6 addresses

• Not always used

• Performance penalty for UD sends (to verify address handle)

• Does not cover UD reception

• Observation: GIDs do not seem to be suitable for an object-based policy

© 2015 Mellanox Technologies 7 - Mellanox Confidential -

RDMA Traffic Labeling

 Applications initiate IO directly on HW endpoints (QPs)

• HW generates packets

- Kernel is completely by-passed

• Observation: arbitrary internal labeling or labeled networking is not an option

 RDMA traffic labeling must stem from HW architectural attributes

• Network addresses (GIDs, LIDs) are not suitable

• Queue keys (Q_Keys) are not suitable

• Observation: partitions are the natural candidate

- P_Key values are held in HCA partition tables

 Populated by privileged network Subnet-Manager (SM)

- P_Keys are carried on the wire of every data packet

 The only exception is subnet datagram packets (SMPs), which are not accessible to applications

- Every QPs is associated with a P_Key value

 Determined by an index into the partition table

- Partitions are strictly enforced at all times

© 2015 Mellanox Technologies 8 - Mellanox Confidential -

Fundamental RDMA SELinux Support

 RDMA network security based on partitioning

• Host kernels control the association of P_Key values with security descriptors

• SM configuration and P_Key assignment determined by network administrator

- SELinux policies may be used to control which processes can access the SMI

 E.g., only SM and tools processes

 Object labeling

• Associate QPs and RDMA IDs with a security descriptor

- Inherited by the creating process in the absence of a specific policy

• P_Key value labeling

- Associates a P_Key value with a security descriptor

- System object descriptors are a good example (like network interfaces or nodes)

 “system_u:object_r:rdma_partition_default_t”

 “system_u:object_r:rdma_partition_topsecret_t”

• Other objects not labeled

© 2015 Mellanox Technologies 9 - Mellanox Confidential -

Fundamental RDMA SELinux Support (cont.)

 Traffic labeling
• Network labeling based on P_Key values

 Policies
• Allow a process access to a P_Key value

- E.g., “allow hpc_default_t rdma_partition_default_t : rdma_partition { modify }”, where

 ‘hpc_default_t’ is the QP / RDMA_ID domain (type) inherited from the creating process

 ‘rdma_partition_default_t’ is a partition security descriptor domain

 ‘rdma_partition’ indicates that the subject is of partition type

 ‘modify’ indicates that the QP is allowed to modify to reference the corresponding partition tag

• Allow a process access to the SMI

 Partition enforcement
• QP partitioning enforced at all times

- Upon QP creation, a violation shall result in an immediate error

- During runtime

 Any runtime violation due to policy changes or P_Key value changes shall transition the QP into ERROR state

• RDMA-ID

- All ingress/egress CM MADs shall be checked according to the partition policy

- Any violation shall result in an immediate packet drop

• umad interface for GMPs

© 2015 Mellanox Technologies 10 - Mellanox Confidential -

Enforcing SELinux Policy on IB Partitions

 Enforce access to IB partitions with access controls on Pkeys.

• Label Pkeys in the SELinux policy.

• When QP partition key settings are changed access to the Pkey is enforced.

• QP inherits it’s creating tasks’ security context.

 Changes required.

• New LSM hooks for managing the QP security field and checking Pkey permissions.

• Add SELinux kernel support for pkey labels and access control.

• Changes in ib_core kernel module to enforce QP access to Pkeys and incoming and outgoing management

datagrams.

- Changes are device independent.

• SELinux user space utilities modified to support Pkey labeling in the policy language.

• Refpolicy changes to label the Pkeys.

© 2015 Mellanox Technologies 11 - Mellanox Confidential -

QP State Transitions

© 2015 Mellanox Technologies 12 - Mellanox Confidential -

Implementation Details

 Added a security field to the ib_qp structure.

 Added new LSM and SELinux hooks to allocate the security structure and free it.

• Allocation happens at QP create, and it’s security context is set to that of the calling task.

• De-allocation happens during QP destroy.

 Added support to SELinux policy language to label P_Keys based on their value.

• Similar to port labeling, allowing for individual P_Keys or ranges.

- pkeycon <pkey_number> gencontext(<label>)

- pkeycon <low_pkey_number>-<high_pkey_number> gencontext(<label>)

- Similar to port labeling.

 Added one new LSM and SELinux hook that takes the P_Key value and a QP security context to

check for permission.

• The hook is executed in ib_modify_qp whenever IB_QP_PKEY_INDEX is set in the attribute mask.

• It is also run against all QPs on a port when the P_Key table changes

- This requires keeping a list of QP using a particular P_Key index on each port.

- If permission is not allowed for the new P_Key in the index the QP is moved to the error state.

© 2015 Mellanox Technologies 13 - Mellanox Confidential -

P_Key Labeling Syntax

attribute pkey_type;

attribute protected_pkey_type;

attribute unprotected_pkey_type;

type pkey_t, pkey_type;

sid pkey gen_context(system_u:object_r:pkey_t,s0)

type staff_allowed_pkey_t, pkey_type, protected_pkey_type;

type admin_allowed_pkey_t, pkey_type, protected_pkey_type;

type default_pkey_t, pkey_type, unprotected_pkey_type;

pkeycon 65535 gen_context(system_u:object_r:default_pkey_t,s0)

pkeycon 32769 gen_context(system_u:object_r:staff_allowed_pkey_t,s0)

pkeycon 32770 gen_context(system_u:object_r:admin_allowed_pkey_t,s0)

© 2015 Mellanox Technologies 14 - Mellanox Confidential -

Pkey Allow Syntax

allow sysadm_t default_pkey_t:rdma_pkey modify;

allow staff_t default_pkey_t:rdma_pkey modify;

allow sysadm_t admin_allowed_pkey_t:rdma_pkey modify;

allow staff_t staff_allowed_pkey_t:rdma_pkey modify;

© 2015 Mellanox Technologies 15 - Mellanox Confidential -

Submission Plan

 First new LSM hooks must be added to the upstream Linux kernel.

 After that SELinux kernel and users space changes can be submitted.

 After that the reference policy changes to provide default rules for Pkey access can be submitted.

© 2015 Mellanox Technologies 16 - Mellanox Confidential -

Demonstration Configuration

 Two roles

• Staff_r

• Admin_r

 Four available partitions

• Default (0xFFFF) – both allowed

• Staff allowed (0x8001)

• Admin allowed (0x8002)

• Neither allowed (0x8003)

© 2015 Mellanox Technologies 17 - Mellanox Confidential -

Pkey Table

© 2015 Mellanox Technologies 18 - Mellanox Confidential -

Admin to Staff on Default Partition

© 2015 Mellanox Technologies 19 - Mellanox Confidential -

Admin to Admin on the Admin Partition

© 2015 Mellanox Technologies 20 - Mellanox Confidential -

Admin to Admin on Staff Partition

 Both sides of the connection encountered an EACCESS error.

© 2015 Mellanox Technologies 21 - Mellanox Confidential -

Staff to Admin on Staff Partition

 Note in this case only the Admin side encounters an EACCESS error. The Staff side just has an
error connecting.

© 2015 Mellanox Technologies 22 - Mellanox Confidential -

Admin to Staff on a Neither Allowed Partition

© 2015 Mellanox Technologies 23 - Mellanox Confidential -

Audit2Allow

 This tool generates policy code to allow violations in the audit log.

 If we added the three allow lines for “rdma_pkey” the access errors in the demo would be allowed.

© 2015 Mellanox Technologies 24 - Mellanox Confidential -

Discussion Points

 Should we control access to partition values or <partition, port, device> tuples

 Hex format for P_Key values in policy language.

 Subject of partition rules:

• Pkeys

• QPs/RDMA IDs/umad FDs

 “Action” word, currently modify.

 Event on QP modify to ERR.

 SMI interface control mechanism.

Thank You

