
Dan Jurgens

Sept 23, 2015

SELinux support for RDMA

© 2015 Mellanox Technologies 2 - Mellanox Confidential -

Introduction

 SELinux is a Mandatory Access Control (MAC) scheme for Linux
• Central policy is loaded upfront into the kernel

- Standard policies are typically provided by the Linux distribution

• Applications cannot override or modify this policy

 Benefits
• Differentiate a user from the applications that the user runs

• Restrict application access only to what is required to perform its task

• Allow granular policy segregation

• Example

- Run 2 instances of a Web Server: “top-secret” and “standard”

- Each server can only

 Receive traffic from specific network interfaces

 Open sockets on specific ports

 Serve files from specific directories

 Communicate only with specific peer addresses

 Type enforcement is the main security mechanism used by SELinux

© 2015 Mellanox Technologies 3 - Mellanox Confidential -

Type Enforcement (TE)

 Applies to all user-visible kernel entities
• E.g., processes, files, IPC objects, sockets

 Each entity is associated with:
• A security descriptor

- Assigned upon creation

- May be modified based on policy

• A class and a set of operations

- Stems from the type of object

- E,g., a socket can send() and recv()

 TE defines what a <subject> can do on an <object> based on their security descriptors
• Specified by a policy of access rules

• Enforced when accesses are made

 Security descriptors
• Identify the user, role, type, and optionally security level+class of an object

• Specified by a variable-length string: “user:role:type[:level]”

 Policy rules
• Specify which source tag can access which target tag and for what operations

- E.g., “allow source_t target_t:class { [op1] [op2] … }”

• Typically, only the ‘type’ (a.k.a ‘Domain’) portion of the tag is mentioned

© 2015 Mellanox Technologies 4 - Mellanox Confidential -

SELinux Network Security

 Network object labeling
• Interfaces

- E.g., eth2

- Used in the past for packet tagging
 Today packets are tagged by network traffic labeling

• Nodes
- Label IPv4/6 addresses and network masks

• Ports
- Label TCP/UDP port numbers

• Sockets
- Usually inherit the security descriptor of the creating process

 Network traffic labeling
• Internal labeling

- Tag traffic according to local OS policies

- The de-facto standard is SECMARK
 Extends standard iptables/netfilter to mark packets with

security descriptors

• Labeled networking
- Labels on the wire

- Each local system interprets the label to enforce is MAC
policies

- Supported schemes
 Labled IPSec

 CIPSO

 SELinux network policies define

• What a process can do with network objects

- For example: allow ‘ftp_t’ (the FTP process) to bind a

socket to ‘ftp_data_port’ (TCP port 20)

• What traffic a process can send/receive

 Policy enforcement

• Object policies are enforced during system calls

• Traffic policies are enforced per-packet

© 2015 Mellanox Technologies 5 - Mellanox Confidential -

RDMA Network Objects

 Verbs objects (PDs, QPs, CQs, SRQs, MRs, etc.)

• Do not have well-known names

- The user doesn’t even control them

• Observation: granular MAC control policies for Verbs resources doesn’t make much sense

- E.g., allow a process to modify QP253 to RTR???

 RDMA-CM objects (RDMA IDs)

• Similar to sockets

- ServiceID port-spaces map TCP/UDP ports spaces

- Similar semantics and operation

• However

- Actual data path governed by Verbs objects

- There are RDMA applications that don’t use RDMA-CM at all

• Observation: RDMA-CM security policies may provide socket-like MAC control for CM service IDs

- However, it does not provide a stronger security model

- Simple policies are still required for P_Key enforcement

© 2015 Mellanox Technologies 6 - Mellanox Confidential -

RDMA Network Objects (cont.)

 Interface objects (RDMA devices and ports)

• Associated with every communication end-point (QP)

• Observation: may be used for object-based policies

- But benefit is not clear

- Network labeling (see below) is a much better alternative

 Node objects (GIDs)

• May be treated similarly to IPv6 addresses

• Not always used

• Performance penalty for UD sends (to verify address handle)

• Does not cover UD reception

• Observation: GIDs do not seem to be suitable for an object-based policy

© 2015 Mellanox Technologies 7 - Mellanox Confidential -

RDMA Traffic Labeling

 Applications initiate IO directly on HW endpoints (QPs)

• HW generates packets

- Kernel is completely by-passed

• Observation: arbitrary internal labeling or labeled networking is not an option

 RDMA traffic labeling must stem from HW architectural attributes

• Network addresses (GIDs, LIDs) are not suitable

• Queue keys (Q_Keys) are not suitable

• Observation: partitions are the natural candidate

- P_Key values are held in HCA partition tables

 Populated by privileged network Subnet-Manager (SM)

- P_Keys are carried on the wire of every data packet

 The only exception is subnet datagram packets (SMPs), which are not accessible to applications

- Every QPs is associated with a P_Key value

 Determined by an index into the partition table

- Partitions are strictly enforced at all times

© 2015 Mellanox Technologies 8 - Mellanox Confidential -

Fundamental RDMA SELinux Support

 RDMA network security based on partitioning

• Host kernels control the association of P_Key values with security descriptors

• SM configuration and P_Key assignment determined by network administrator

- SELinux policies may be used to control which processes can access the SMI

 E.g., only SM and tools processes

 Object labeling

• Associate QPs and RDMA IDs with a security descriptor

- Inherited by the creating process in the absence of a specific policy

• P_Key value labeling

- Associates a P_Key value with a security descriptor

- System object descriptors are a good example (like network interfaces or nodes)

 “system_u:object_r:rdma_partition_default_t”

 “system_u:object_r:rdma_partition_topsecret_t”

• Other objects not labeled

© 2015 Mellanox Technologies 9 - Mellanox Confidential -

Fundamental RDMA SELinux Support (cont.)

 Traffic labeling
• Network labeling based on P_Key values

 Policies
• Allow a process access to a P_Key value

- E.g., “allow hpc_default_t rdma_partition_default_t : rdma_partition { modify }”, where

 ‘hpc_default_t’ is the QP / RDMA_ID domain (type) inherited from the creating process

 ‘rdma_partition_default_t’ is a partition security descriptor domain

 ‘rdma_partition’ indicates that the subject is of partition type

 ‘modify’ indicates that the QP is allowed to modify to reference the corresponding partition tag

• Allow a process access to the SMI

 Partition enforcement
• QP partitioning enforced at all times

- Upon QP creation, a violation shall result in an immediate error

- During runtime

 Any runtime violation due to policy changes or P_Key value changes shall transition the QP into ERROR state

• RDMA-ID

- All ingress/egress CM MADs shall be checked according to the partition policy

- Any violation shall result in an immediate packet drop

• umad interface for GMPs

© 2015 Mellanox Technologies 10 - Mellanox Confidential -

Enforcing SELinux Policy on IB Partitions

 Enforce access to IB partitions with access controls on Pkeys.

• Label Pkeys in the SELinux policy.

• When QP partition key settings are changed access to the Pkey is enforced.

• QP inherits it’s creating tasks’ security context.

 Changes required.

• New LSM hooks for managing the QP security field and checking Pkey permissions.

• Add SELinux kernel support for pkey labels and access control.

• Changes in ib_core kernel module to enforce QP access to Pkeys and incoming and outgoing management

datagrams.

- Changes are device independent.

• SELinux user space utilities modified to support Pkey labeling in the policy language.

• Refpolicy changes to label the Pkeys.

© 2015 Mellanox Technologies 11 - Mellanox Confidential -

QP State Transitions

© 2015 Mellanox Technologies 12 - Mellanox Confidential -

Implementation Details

 Added a security field to the ib_qp structure.

 Added new LSM and SELinux hooks to allocate the security structure and free it.

• Allocation happens at QP create, and it’s security context is set to that of the calling task.

• De-allocation happens during QP destroy.

 Added support to SELinux policy language to label P_Keys based on their value.

• Similar to port labeling, allowing for individual P_Keys or ranges.

- pkeycon <pkey_number> gencontext(<label>)

- pkeycon <low_pkey_number>-<high_pkey_number> gencontext(<label>)

- Similar to port labeling.

 Added one new LSM and SELinux hook that takes the P_Key value and a QP security context to

check for permission.

• The hook is executed in ib_modify_qp whenever IB_QP_PKEY_INDEX is set in the attribute mask.

• It is also run against all QPs on a port when the P_Key table changes

- This requires keeping a list of QP using a particular P_Key index on each port.

- If permission is not allowed for the new P_Key in the index the QP is moved to the error state.

© 2015 Mellanox Technologies 13 - Mellanox Confidential -

P_Key Labeling Syntax

attribute pkey_type;

attribute protected_pkey_type;

attribute unprotected_pkey_type;

type pkey_t, pkey_type;

sid pkey gen_context(system_u:object_r:pkey_t,s0)

type staff_allowed_pkey_t, pkey_type, protected_pkey_type;

type admin_allowed_pkey_t, pkey_type, protected_pkey_type;

type default_pkey_t, pkey_type, unprotected_pkey_type;

pkeycon 65535 gen_context(system_u:object_r:default_pkey_t,s0)

pkeycon 32769 gen_context(system_u:object_r:staff_allowed_pkey_t,s0)

pkeycon 32770 gen_context(system_u:object_r:admin_allowed_pkey_t,s0)

© 2015 Mellanox Technologies 14 - Mellanox Confidential -

Pkey Allow Syntax

allow sysadm_t default_pkey_t:rdma_pkey modify;

allow staff_t default_pkey_t:rdma_pkey modify;

allow sysadm_t admin_allowed_pkey_t:rdma_pkey modify;

allow staff_t staff_allowed_pkey_t:rdma_pkey modify;

© 2015 Mellanox Technologies 15 - Mellanox Confidential -

Submission Plan

 First new LSM hooks must be added to the upstream Linux kernel.

 After that SELinux kernel and users space changes can be submitted.

 After that the reference policy changes to provide default rules for Pkey access can be submitted.

© 2015 Mellanox Technologies 16 - Mellanox Confidential -

Demonstration Configuration

 Two roles

• Staff_r

• Admin_r

 Four available partitions

• Default (0xFFFF) – both allowed

• Staff allowed (0x8001)

• Admin allowed (0x8002)

• Neither allowed (0x8003)

© 2015 Mellanox Technologies 17 - Mellanox Confidential -

Pkey Table

© 2015 Mellanox Technologies 18 - Mellanox Confidential -

Admin to Staff on Default Partition

© 2015 Mellanox Technologies 19 - Mellanox Confidential -

Admin to Admin on the Admin Partition

© 2015 Mellanox Technologies 20 - Mellanox Confidential -

Admin to Admin on Staff Partition

 Both sides of the connection encountered an EACCESS error.

© 2015 Mellanox Technologies 21 - Mellanox Confidential -

Staff to Admin on Staff Partition

 Note in this case only the Admin side encounters an EACCESS error. The Staff side just has an
error connecting.

© 2015 Mellanox Technologies 22 - Mellanox Confidential -

Admin to Staff on a Neither Allowed Partition

© 2015 Mellanox Technologies 23 - Mellanox Confidential -

Audit2Allow

 This tool generates policy code to allow violations in the audit log.

 If we added the three allow lines for “rdma_pkey” the access errors in the demo would be allowed.

© 2015 Mellanox Technologies 24 - Mellanox Confidential -

Discussion Points

 Should we control access to partition values or <partition, port, device> tuples

 Hex format for P_Key values in policy language.

 Subject of partition rules:

• Pkeys

• QPs/RDMA IDs/umad FDs

 “Action” word, currently modify.

 Event on QP modify to ERR.

 SMI interface control mechanism.

Thank You

