
OFVWG:

User-space Memory

Windows

Yishai Hadas, Liran Liss

Agenda

• Introduction – what are Memory Windows?

– Motivation and use-cases

– Window types: Type 1, Type 2A/2B

• User APIs

– Device capabilities

– Memory window allocation

– Type1 Bind and Unbind

– Type2 Bind and Invalidation

OFVWG 2

What are windows?

• Motivation: efficient, safe remote
transactions
– Register once local memory buffer

with no remote access

– Provide peer proper access rights
and aperture only throughout the
duration of the expected
transaction

• Open a “window” into an existing
MR with elevated remote rights
– Does not alter or consume new

translation resources

– Not a privileged operation
• Accomplished through posting a WR

to the Send Queue

OFVWG 3

MR

(no remote access)

MW

(provides RKey)

Type1 and type2

• Type1
– MW associated only with an MR

– CA owns Rkey

• Type2
– MW associated with both an MR and a QP

• Granular, per-connection access enforcement

– Consumer owns key portion of the RKey

– Supports remote invalidation

– Supports zero-based virtual addresses (ZBVA)

OFVWG 4

Type 1 Type 2
ZBVA No Yes
Send with invalidate No Yes
Local invalidate No Yes
Bind MW via standard PostSend() Verb No Yes
Bind MW via dedicated BindMW() Verb Yes No
Key ownership CI Consumer

Type 2A/2B

• Differ in destruction semantics
– Type2A MW requires unbinding all MWs before destroying a QP

– Type2B MW allows destroying QPs with bound MWs
• PD checks are added avoid misuse if QP allocated to another process

• A CA can support either one, but not both

OFVWG 5

Type 2A Type 2B
Post Bind Same PD Same PD
Invalidate Same QP Same PD and QP
MW Access Same QP Same PD and QP
QP Destruction First unbind/destroy

all type 2A MW
Even with type 2B
MW associated

Device Capability APIs

• IBV_DEVICE_MEM_WINDOW
– Support for Type1

• IBV_DEVICE_MEM_MGT_EXTENSIONS
– Support Type2 Windows

– Lots of other stuff (mainly privileged Verbs)

• If Type2 windows are supported, an indication of
either
– IBV_DEVICE_MEM_WINDOW_TYPE_2A

– IBV_DEVICE_MEM_WINDOW_TYPE_2B

OFVWG 6

Allocation APIs

• No need to distinguish between 2A/2B
– Implied by CA capabilities

OFVWG 7

enum ibv_mw_type {

IBV_MW_TYPE_1 = 1,

IBV_MW_TYPE_2 = 2

};

struct ibv_mw {

struct ibv_context *context;

struct ibv_pd *pd;

uint32_t rkey;

uint32_t handle;

enum ibv_mw_type type;

};

struct ibv_mw *ibv_alloc_mw(struct ibv_pd *pd,

enum ibv_mw_type type);

int ibv_dealloc_mw(struct ibv_mw *mw);

Type1 Bind/Unbind APIs

OFVWG 8

struct ibv_mw_bind_info {

struct ibv_mr *mr; /* The MR to bind the MW to */

uint64_t addr; /* The address the MW should start at */

uint64_t length; /* The length (in bytes) the MW should span */

int mw_access_flags; /* Access flags to the MW. Use ibv_access_flags */

};

struct ibv_mw_bind {

uint64_t wr_id;

int send_flags;

struct ibv_mw_bind_info bind_info;

};

int ibv_bind_mw(struct ibv_qp *qp, struct ibv_mw *mw, struct ibv_mw_bind *mw_bind);

enum ibv_wc_opcode { ...

IBV_WC_BIND_MW ...

};

• Posting a Bind work request via dedicated Verb
– ibv_bind_mw()

• Allows consumer to observe CA assigned RKey immediately
– No need to wait for Bind completion

Type1 Bind/Unbind APIs (cont.)

OFVWG 9

• Access flags
– IBV_ACCESS_REMOTE_WRITE/READ/ATOMIC

• Send flags
– IBV_SEND_FENCE

– IBV_SEND_SIGNALED

• RKey returned in mw->rkey
– Takes affect only after the operations successfully completes

on the QP

– Application may rely on WR ordering to send the Rkey
• If the bind fails, the send will be flushed in error

• A MW may be continuously re-bound
– Unbind performed by calling ibv_bind_mw() with length=0

Type2 Bind APIs

OFVWG 10

enum ibv_wr_opcode { ...

IBV_WR_BIND_MW, ...

};

struct ibv_send_wr { ...

struct {

struct ibv_mw *mw;

uint32_t rkey;

struct ibv_mw_bind_info bind_info;

} bind_mw;

};

uint32_t ibv_inc_rkey(uint32_t rkey);

• Binding posted using ibv_post_send()
– A MW may not be re-bound unless first invalidated

• User responsible for determining Rkey
– By calling ibv_inc_rkey()

Type2 Invalidation APIs

OFVWG 11

enum ibv_wr_opcode { ...

IBV_WR_LOCAL_INV, ...

IBV_WR_SEND_WITH_INV, ...

};

enum ibv_wc_opcode { ...

IBV_WC_LOCAL_INV, ...

};

enum ibv_wc_flags { ...

IBV_WC_WITH_INV, ...

};

• RKey provided in WR immediate data
– While posting local/remote invalidations

• RKey returned in WC immediate data
– Indicated by IBV_WC_LOCAL_INV opcode for local invalidations

– Indicated by IBV_WC_WITH_INV flag for remote invalidations

OFVWG

Thank You

