
OVFWG – RSS Verbs

May 2016

Current status – The RAW ETH QP

• Ibv_qp type: RAW_ETH

• Use mature verbs objects
– QP, CQ, MR

• Pair of send and receive
queues
– Send queue to transmit raw

packets - No implicit headers

– Receive queue is steered
according to flows
classification

• Stateless Offloads Engine
– Currently csum offload is

supported

– And Interrupt moderation (CQ
moderation)

• Require privileged user
– CAP_NET_RAW

www.openfabrics.org 2

Application

net_dev
mlx_en

TCP/IP Kernel
Stack

uVerbs

mlx_ib

User Mode
Stack / DPDK

Ib_core

Sockets

Ethernet Stateless Offloads Engine

NIC

U

K

RAW
“QP”

RAW
QP

Send/Recv
Ethernet
frames

Verbs objects: QP,
CQ, Mem regs

Transmit
Flow

Tables

Receive
Flow

Tables

Introduction

• Receive Side Scaling (RSS) technology
enables spreading incoming traffic to
multiple receive queues

• Each receive queue is associated with a
completion queue

• Completion Queues (CQ) are bound to a
CPU core
– CQ is associated with interrupt vector and

thus with CPU
• For polling, user may run polling for each CQ from

associated CPU

– In NUMA systems, CQ may be allocated on
close memory to associated CPU

• Spreading the receive queues to different
CPU cores allows spreading receive
workload of incoming traffic

3

RSS Hash

Ingress Traffic

RQ#0

. . .

CQ#0

RQ#1

CQ#1

RQ#N

CQ#N

RQ

CQ

Ingress

Traffic

Flow Overview

Classify first, distribute after

• Begin with classification
– Using Steering (ibv_create_flow()) classify incoming traffic

– Classification rules may be any of the packet L2/3/4 header attributes
• e.g. TCP/UDP only traffic, IPv4 only traffic, ..

– Classification result is transport object - QP

• Continue with spreading
– Transport object (QPs) are responsible for spreading to the receive queues

– QPs carry RSS spreading rules and receive queue indirection table

• RQs are associated with CQ
– CQs are associated with CPU core

• Different traffic types can be subject to different spreading

Work Queue (WQ)

• Typically QPs (Queued Pairs) are created with 3
elements
– Transmit and receive Transport

– Receive Queue
• Exception is QPs which are associated with SRQ

– Send Queue

• Extend verbs to support separate allocation of the above
3 elements
– Transport – ibv_qp with no RQ or SQ

• Ibv_qp_type of IBV_QPT_RAW_ETH
– Next will be UD QP type

• New QP attribute: ibv_rx_hash_conf

– Work Queue – ibv_wq
• Can be of 2 types: IBV_RQ – Receive Queue and IBV_SQ

• We’ll start with IBV_RQ definition

QP

Transport

Send
WQ

Recv
WQ

QP

Transport

Recv
WQ

Send
WQ

Recv
WQ

Send
WQ

Recv
WQ

Send
WQ

Work Queue (WQ) – Cont.

• Work Queues of type Receive Queue (IBV_RQ) may share receive pull
– By associating many Work Queues to same Shared Receive Queue (the existing

verbs ibv_srq object)

• QP (ibv_qp) can be created without internal Send and Receive Queues and
associated with external Work Queue (ibv_wq)

• QP can be associated with multiple Work Queues of type Receive Queue
– Through Receive Queue Indirection Table object

struct ibv_wq {

struct ibv_context *context;

void *wq_context;

uint32_t handle;

struct ibv_pd *pd;

struct ibv_cq *cq;

/* SRQ handle if WQ is to be /

associated with an SRQ, /

otherwise NULL */

struct ibv_srq *srq;

uint32_t wq_num;

enum ibv_wq_state state;

enum ibv_wq_type wq_type;

uint32_t comp_mask;

};

 New object: Work Queue - ibv_wq

 Managed through following new calls:
• ibv_wq *ibv_create_wq(ibv_wq_init_attr)

• ibv_modify_wq(ibv_wq , ibv_wq_attr)

• ibv_destory_wq(ibv_wq)

• ibv_post_wq_recv(ibv_wq, ibv_recv_wr)

 Work Queues (ibv_wq) are associated
with Completion Queue (ibv_cq)
• Multiple Work Queues may be mapped to same

Completion Queue (many to one)

WQ of Type RQ – State Diagram

RDY ERR

C
R

E
A

T
E

_R
Q

D
ESTR

O
Y

_R
Q

MODIFY_RQ
(RDY2RDY)

MODIFY_RQ
(RDY2ERR)

SW
Transition

SW/HW
Transition

any state

RDY

RST

Receive Work Queue Indirection Table

• New object: Receive Work Queue
Indirection Table –
ibv_rwq_ind_table

• Managed through following new
calls:
– ibv_wq_ind_tbl

*ibv_create_rwq_ind_table(ibv_rwq
_ind_table_init_attr)

– ibv_modify_rwq_ind_table(ibv_rwq_
ind_table)

– ibv_query_rwq_ind_table(ibv_rwq_i
nd_tbl, ibv_rwq_ind_table_attr)

– ibv_destroy_rwq_ind_table(ibv_rwq
_ind_tbl)

• QPs may be associated with an
RQ Indirection Table

• Multiple QPs may be associated
with same RQ Indirection Table

struct ibv_rwq_ind_table {

struct ibv_context *context;

uint32_t handle;

int ind_tbl_num;

uint32_t comp_mask;

};

/*

* Receive Work Queue Indirection Table

attributes

*/

struct ibv_rwq_ind_table_init_attr {

uint32_t log_rwq_ind_tbl_size;

struct ibv_wq **rwq_ind_tbl;

uint32_t comp_mask;

};

/*

* Receive Work Queue Indirection Table

attributes

*/

struct ibv_rwq_ind_table_attr {

uint32_t attr_mask;

uint32_t log_rwq_ind_tbl_size;

struct ibv_wq **rwq_ind_tbl;

uint32_t comp_mask;

};

Transport Object (QP)

• “RSS” QP
– QP attributes (ibv_qp_attr) now

include RSS hash configuration
attributes (ibv_rx_hash_conf)

– QP is Stateless

– QP’s Send and Receive WQs
parameters are invalid - QP has no
internal work queues

– Use ibv_post_wq_recv instead of
ibv_post_recv

– QP is connected to RQ Indirection
Table

• On Receive, traffic is steered to
the QP according to existing
steering API

– Ibv_create_flow()

• Following, matching RQ is
chosen according to QPs hash
calculation

struct ibv_rx_hash_conf {

/* enum ibv_rx_hash_fnction */

uint8_t rx_hash_function;

/* valid only for Toeplitz */

uint8_t *rx_hash_key;

/* enum ibv_rx_hash_fields */

uint64_t rx_hash_fields_mask;

struct ibv_rwq_ind_table *rwq_ind_tbl;

};

/*

RX Hash Function.

*/

enum ibv_rx_hash_function_flags {

IBV_RX_HASH_FUNC_TOEPLTIZ = 1 << 0,

IBV_RX_HASH_FUNC_XOR = 1 << 1

};

/*

Field represented by the flag will be

used in RSS Hash calculation.

*/

enum ibv_rx_hash_fields {

IBV_RX_HASH_SRC_IPV4 = 1 << 0,

IBV_RX_HASH_DST_IPV4 = 1 << 1,

IBV_RX_HASH_SRC_IPV6 = 1 << 2,

IBV_RX_HASH_DST_IPV6 = 1 << 3,

IBV_RX_HASH_SRC_PORT_TCP = 1 << 4,

IBV_RX_HASH_DST_PORT_TCP = 1 << 5,

IBV_RX_HASH_SRC_PORT_UDP = 1 << 6,

IBV_RX_HASH_DST_PORT_UDP = 1 << 7

};

IBV_QPT_RAW_PACKET QPs with
IBV_QP_INIT_ATTR_RX_HASH = 1

ibv_rwq_ind_tbl

RQ 5

RQ 8

RQ 4

5

8

5

Enabled flags in rx_hash_fields_mask

IBV_WQT_RQ

TCP IPv4

Udp
ipv6

MAC2...

Tcp
ipv4

Verbs Steering Classifies the traffic

RX Hash FuncHash Value

UDP IPv6

IBV_QPT_RAW_PACKET QPs distributes traffic type between RQs/Cores

Core 2

Core 3

Verbs Flows

rx_hash_function

Hash Value

Cores

Core 1CQ1

CQ2

CQ3

IBV_CQs

4
rx_hash_function

Enabled flags in rx_hash_fields_mask

Flow Diagram

QP#10

QP#11

Next

• IPoIB UD QP type
– “RSS” UD QP is connected to RQ Indirection Table

– RSS UD QP to continue to manage UD transport attributes:
pkey, qkey checks…

– Single wire QPN for all getting to all the QPs Receive Queues

• Transmit Side Scaling (TSS)
– As in RSS, QP is stateless, Send and Receive work queues

attributes are invalide

– Use ibv_post_wq_send instead of ibv_post_send

– For IPoIB UD QP:
• Manage UD transport properties: pkey, qkey…

• Use single source QPN in DETH wire protocol header for all Send WQ
which is the “TSS” UD QP

– The same QP may be used for both “RSS” and “TSS”
operations

Thank You

#OFADevWorkshop

